Бакалавр
Дипломные и курсовые на заказ

Колебательные процессы в ходе амино-карбонильной реакции

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Амино-карбонильная реакция (АКР) — это неферментативная реакция, самопроизвольно протекающая между различными аминои карбонилсодержащими соединениями. Так как многие биологически важные молекулы содержат в своем составе указанные функциональные группировки, то это приводит к тому, что АКР с неизбежностью протекает в живых системах. В настоящее время наметился бурный рост исследовательских работ… Читать ещё >

Содержание

  • Список сокращений
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Общая характеристика амино-карбонильной реакции
      • 1. 1. 1. Основные этапы реакции
      • 1. 1. 2. Влияние различных условий
    • 1. 2. Амино-карбонильная реакция в биологических системах
      • 1. 2. 1. Образование активных альдегидов in vivo
      • 1. 2. 2. Конечные продукты амино-карбонильной реакции in vivo
      • 1. 2. 3. Современные представления о роли аминокарбонильной реакции
    • 1. 3. Хемилюминесценция и биохемилюминесценция
      • 1. 3. 1. Хемилюминесценция в ходе амино-карбонильной реакции
    • 1. 4. Колебательные процессы в биологических и химических системах
  • 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 2. 1. Реактивы и оборудование
    • 2. 2. Методика регистрации хемилюминесценции
    • 2. 3. Спектральный анализ хемилюминесценции
    • 2. 4. Измерение окислительно-восстановительного потенциала и концентрации растворенного кислорода
  • 3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
    • 3. 1. Колебания хемилюминесценции в ходе амино-карбонильной реакции
    • 3. 2. Влияние рН и температуры на хемилюминесценцию
  • Список сокращений
  • АА — активные альдегиды
  • АКР — амино-карбонильная реакция
  • АФК — активные формы кислорода
  • БЖ-реакция — реакция Белоусова-Жаботинского
  • БСА — бычий сывороточный альбумин
  • ДМСО — диметилсульфоксид
  • ИПМ — ионы переходных металлов
  • НСТ — нитросиний тетразолиевый
  • ОВП — окислительно-восстановительный потенциал
  • ПО-реакция — пероксидазно-оксидазная реакция
  • ТБК — тио барбитуровая кислота
  • ФЭУ — фотоэлектронный умножитель
  • X. JT — хемилюминесценция
  • ЭПР — электронный парамагнитный резонанс
  • AGEs — продукты глубокого гликирования
  • Arg — аргинин
  • GOLD (MOLD) — GlyOxal (MethylglyOxal)-Lysine Dimer (AGE)
  • GSH — глутатион (восстановленная форма)
  • Lys — лизин
  • RAGE — рецепторы гликированных белков

Колебательные процессы в ходе амино-карбонильной реакции (реферат, курсовая, диплом, контрольная)

Колебательные процессы чрезвычайно широко распространены в живых организмах и проявляются на самых разных уровнях организации биологических систем (кальциевые спайки, гликолиз, темновая стадия фотосинтеза, матричный синтез, циркадные ритмы, популяционные колебания и т. д.). В то же время исключительно сложная сеть взаимодействий, имеющая место уже на самом первом, молекулярном, уровне, заставляет искать и изучать более простые химические системы с признаками самоорганизации. Поэтому не случайно, что жидкофазная колебательная реакция Белоусова — Жаботинского (БЖ-реакция) первоначально вызвала интерес именно у биофизиков, несмотря на то, что в силу специфических условий и неорганической природы основных реагентов она никак не может протекать в биологических системах. БЖ-реакция оказалась очень удобной моделью для изучения автоколебательных и автоволновых явлений, она фактически инициировала развитие современной теории динамических систем, с помощью которой удалось предсказать, а впоследствии и обнаружить множество новых химических колебательных систем. Однако, несмотря на значительный прогресс в области автоколебательных химических реакций, в настоящее время известно очень небольшое число водных колебательных систем, в которых протекают неферментативные реакции с участием биомолекул. В то же время, очевидно, что исследование именно таких систем позволит более глубоко проникнуть в механизмы функционирования биологических систем, а также поможет пролить свет на некоторые вопросы, связанные с предбиологической эволюцией.

Амино-карбонильная реакция (АКР) — это неферментативная реакция, самопроизвольно протекающая между различными аминои карбонилсодержащими соединениями. Так как многие биологически важные молекулы содержат в своем составе указанные функциональные группировки, то это приводит к тому, что АКР с неизбежностью протекает в живых системах. В настоящее время наметился бурный рост исследовательских работ, посвященных АКР in vivo и in vitro. С одной стороны, это связано с тем, что неконтролируемое протекание АКР наряду с другими неферментативными реакциями (перекисное окисление липидов, реакция Михаэля, реакция Пикте-Шпенглера и др.) может приводить к развитию разнообразных патологических состояний. А с другой стороны, окислительно-восстановительные свойства продуктов АКР, генерация активных форм кислорода (АФК) и электронно-возбужденных продуктов в ходе АКР привлекают значительное внимание в связи с отсутствием адекватного объяснения механизмов регуляции посредством АФК и клеточного редокс-потенциала.

Данная работа является частью комплексного исследования роли кислорода и его активных форм в динамике развития автокаталитических окислительных процессов в водных растворах аминокислот и белков, проводимого на кафедре биоорганической химии МГУ. В ходе ее выполнения на модельной АКР мы обнаружили колебания хемилюминесценции [1] и окислительно-восстановительного потенциала [2], i изучению которых и посвящена данная работа. В задачу автора входило феноменологическое описание колебательного процесса, а именно: определить круг исходных реагентов, при использовании которых обнаруживаются колебания, и изучить влияние различных условий (температуры, рН и др.) и добавок (ионов переходных металлов и антиоксидантов) на колебательную динамику хемилюминесценции.

1. ОБЗОР ЛИТЕРАТУРЫ.

ВЫВОДЫ.

1. Впервые обнаружено, что в отсутствие перемешивания в ходе амино-карбонильной реакции, протекающей в водных растворах различных аминои карбонилсодержащих соединений при комнатной температуре, возникает пространственно-временная самоорганизация, характеризующаяся устойчивыми периодическими и апериодическими колебаниями хемилюминесценции и окислительно-восстановительного потенциала.

2. Показана сильная зависимость интенсивности хемилюминесценции и колебаний от скорости диффузии в систему кислорода из атмосферного воздуха. В частности, после длительного пребывания системы в анаэробных условиях восстановление доступа кислорода приводит к эффекту, напоминающему окислительный стресс в живых объектах.

3. Установлено, что существуют пороговые зависимости для возникновения колебательного режима от рН, температуры, объема и площади свободной поверхности.

4. Установлено, что аскорбат в микромолярных концентрациях проявляет прооксидантный, а в миллимолярных концентрациях антиоксидантный эффект. В присутствии ионов переходных металлов продолжительность колебательной стадии существенно возрастает.

5. Совокупность полученных данных указывает на то, что в рассматриваемой системе процесс окисления с участием молекулярного кислорода протекает по свободнорадикальному цепному механизму с вырожденными разветвлениями.

3.6 Заключение.

Несмотря на то, что до сих пор окончательно не известно, на каких стадиях АКР идет активное потребление кислорода, и какие именно реакции приводят к образованию ЭВП, мы попытались систематизировать имеющиеся на сегодняшний день сведения относительно путей генерации электронно-возбужденных продуктов и ХЛ (рис. 25). Помимо литературных данных об источниках электронного возбуждения в ходе АКР (см. стр. 47) на схеме указано несколько новых реакционных путей, в частности, окисление метилглиоксальдиалкилиминов (путь 4- реакция во многом аналогична пути 2), озонов (путь 7- реакция протекает через образование гидроперекисей) и меланоидинов (путь 5- обладают системой сопряженных связей). Представляется наиболее вероятным, что вследствие наличия различных химических группировок одновременно протекают процессы с образованием диоксетанов (например, путь 1 и 2), тетроксидов (например, путь 5, 7 и 8) и синглетного кислорода (путь 3). В то же время анализ литературы и наши исследовании позволяют предположить, что в случае углеводов и гликольальдегида значительную роль может играть образование.

Рис. 25. Основные направления АКР, а также возможные пути, приводящие к генерации электронно-возбужденных состояний (сплошными стрелками указаны установленные реакционные пути, пунктирными стрелками предполагаемые путизвездочкой (*) отмечены гипотетические промежуточные продукты). пиразинкатион-радикала (путь 2), а в присутствии метилглиоксаляобразование метилглиоксальдиалкилимин-катион-радикала (путь 4). С другой стороны, обнаруженная зависимость XJ1 от строения аминосоединения (см. стр. 66), а именно от характера заместителей у первого углеродного атома в алкиламине, предполагает возможное участие в процессах, приводящих к XJI, окислительного дезаминирования аминов и аминокислот (деградация по Штрекеру).

Колебания в ходе АКР обнаруживаются в отсутствие перемешивания при соблюдении определенных условий: концентрации соответствующих реагентов, рН, температуры, объёма и площади свободной поверхности. Трудно сказать, могли ли сталкиваться прежние исследователи с таким феноменом: в большинстве работ не указано, происходило или нет перемешивание реакционной системы. Интересно, что в работе по изучению с помощью XJI, сшивающей способности глутаральдегида, на представленных графиках четко обнаруживаются апериодические колебания, в тоже время автор не обращает никакого внимания на это, к тому же не понятно, осуществлялось ли перемешивание [216].

В целом следует отметить, что рассмотренная в этой работе колебательная система по ряду параметров отличается от других известных колебательных реакций. Во-первых, мы не нашли в доступной нам литературе данных о существовании колебательного режима неферментативного окисления органических соединений в водных растворах при комнатной температуре. Во-вторых, устойчивые колебания проявляются в распределенной системе, где, скорее всего, формируются волны химической активности. В этой связи представляет несомненный интерес тот факт, что в течение многих часов удается зарегистрировать периодические колебания хемилюминесценции и электродного потенциала. В-третьих, для возникновения колебаний не требуется обязательное присутствие ионов переходных металлов (опыты с использованием деионизованной воды в.

98 отсутствие неорганического буфера). В то же время они оказывают существенное влияние на развитие XJI, в частности, ионы меди способны реинициировать колебательные процессы после их затухания. Интересно, что в ходе изучения БЖ-реакции было показано, что переходные металлы, выступающие в роли катализаторов, могут быть заменены некоторыми органическими соединениями (производными анилина и фенола) [260]. Вполне вероятно, что образующиеся в ходе АКР продукты также могут частично выполнять эту роль, т. е. выступать, как окислительно-восстановительные катализаторы. В-четвертых, колебания обнаруживаются с разнообразными аминои карбонилсодержащими соединениями, многие из которых содержатся в биологических системах в достаточно высокой концентрации.

Несомненно, вопрос о наличие сходных колебательных процессов в биологических системах остается открытым. Однако уже очевидно, что неферментативные окислительно-восстановительные реакции, протекающие с участием молекулярного кислорода по свободнорадикальному механизму, являются не только неизбежным фоном биологических процессов, но и играют в живых системах определенную регуляторную роль. В этой связи представленное исследование вполне актуально и, как нам кажется, впоследствии должно быть продолжено.

Показать весь текст

Список литературы

  1. В.Л., Колдунов B.B., Кононов Д. С. (2001) Новый колебательный процесс в водных растворах соединений, содержащих карбонильные и аминогруппы. Кинетика и катализ, т. 42, № 5, С. 670−672.
  2. L.C. (1912) Action des acides amines sur les sucres: Formation des melanoidines par voie methodique. Сотр. Rend. Hebd. Seances Acad. Sci., V. 154, P. 66−68.
  3. Т.А., Давидянц С. Б. (1995) Реакция Майяра: амино-карбонильные взаимодействия in vivo и меланоидины. Успехи биологической химии, Т. 35, С. 229−266.
  4. М. (1988) Chemistry of Maillard reactions: recent studies on the browning reaction mechanism and the development of antioxidants and mutagens. Adv. Food Res., V. 32, P. 115−184.
  5. Eriksson C., ed. (1981) Maillard reactions in food. Prog. FoodNutr. Sci., V. 5.
  6. Waller G.R., Feather M.S., eds. (1983) The Maillard reaction in foods and nutrition. ACS Symp. Ser., V. 215.
  7. Fujimaki M., Namiki M., Kato H., eds. (1986) Amino-carbonyl reactions in food and biological systems. Dev. Food Sci., V. 13.
  8. Monnier V., Baynes J.W., eds. (1989) Maillard reaction in aging, diabetes, and nutrition. New York: Alan R. Liss.
  9. Finot P.A., Aeschbacher H.U., Hurrell R.F., Liardon R., eds. (1990) The Maillard reaction in food processing, human nutrition and physiology. Basel: Birkhauser.
  10. Labuza T.P., Reineccius G.A., Monnier V.M., O’Brien J., Baynes J.W., eds. (1994) Maillard reaction in chemistry, food, and health. Cambridge: The Royal Society of Chemistry.
  11. J.E. (1953) Chemistry of browning reaction in model systems. J. Agr. Food Chem., V. 1, P. 928−943.
  12. J.E. (1967) Origin of flavors in food. Nonenzymatic browning reactions. In: Schulz HW, Day EA, Libbey LM, eds. Chemistry and Physiology of Flavors. Westport: AVI Publ., P. 465−491.
  13. M., Hayashi Т., Kawakishi S. (1973) Free radicals developed in the amino-carbonyl reaction of sugars with amino acids. Agric. Biol. Chem., V. 37, P. 2935−2937.
  14. M., Hayashi Т., Ohta Y. (1977) Novel free radicals formed by the amino-carbonyl reactions of sugars with amino acids, amines, and proteins. Adv. Exp. Med Biol., V. 86B, P. 471−501.
  15. Т., Ohta Y., Namiki M. (1977) Electron spin resonance spectral study on the structure of the novel free radical products formed by the reactions of sugars with amino acids or amines. J. Agric. Food. Chem., V. 25, P. 1282−1287.
  16. M., Hayashi T. (1983) A new mechanism of the Maillard reaction involving sugar fragmentation and free radical formation. ACS Symp. Ser., V. 215, P. 21−46.
  17. Т., Namiki M. (1980) Formation of two carbon sugar fragment at an early stage of the browning reaction with amine. Agric. Biol. Chem., V. 44, P. 2575−2580.
  18. Т., Mase S., Namiki M. (1986) Formation of three-carbon sugar fragment at an early stage of the browning reaction of sugar with amines or amino acids. Agric. Biol. Chem., V. 50, P. 1959−1964.
  19. Т., Namiki M. (1986) Role of sugar fragmentation in the Maillard reaction. Dev. FoodSci., V. 13, P. 29−38.
  20. Т., Mase S., Namiki M. (1985) Formation of the N, N'-dialkylpyrazine cation radical from glyoxal dialkylimine produced on reaction of a sugar with an amine or amino acid. Agric. Biol. Chem., V. 49, P. 3131−3137.
  21. Т., Namiki M. (1986) Role sugar fragmentation in an Early stage browning of amino-carbonyl reaction of sugar with amino acid. Agric. Biol. Chem., V. 50, P. 1965−1970.
  22. Anet E.F.L.J. (1960) Degradation of carbohydrates I. Isolation of 3-deoxy-hexosones. Aust. J. Chem., V. 13, P. 396−403.
  23. H. (1960) Isolation and characterization of new carbonyl compounds, 3-deoxyosones formed from yV-glycosides and their significance for browning reaction. Agric. Biol. Chem., V. 24, P. 1−12.
  24. Anet E.F.L.J. (1962) Formation of furan compounds from sugars. Chem. Ind. {London), V. 1962, P. 262.
  25. Т.Н., Seilmeier W. (1968) Studien zur Maillard-Reaktion III. Unwandlung von Glucose under dem Einfluss von Methylammoniumacetat. Z. Lebensm. Unters. Forsch., B. 137, S. 4−6.
  26. F., Kato H. (1986) Low-molecular Maillard reaction products and their formation mechanism. Dev. FoodSci., V. 13, P. 39−48.
  27. Aso K. (1939) Formation of 3-hydroxypyridines from the reaction of glucose and ammonium salts. Nippon Nogeikagakukaishi, V. 15, P. 629−633.
  28. R., Kruger G., Haas H.J., Seeliger A. (1961) Pyrazinbildung aus Aminozuckern. Ann. Dtsch. Chem. Ges., B. 644, S. 122−127.
  29. H., Komoto M., Kato H., Fujimaki M. (1973) Formation of deoxyfructosazine and its 6-isomer on the browning reaction between glucose and ammonia in weakly acidic medium. Agric. Biol. Chem., V. 37, P. 2571−2578.
  30. F., Fritsch G., Heibl J., Pachmayr O., Severin T. (1986) Degradation of Maillard products. Dev. FoodSciV. 13, P. 173−182.
  31. K.B., Feather M.S. (1975) Studies on the mechanism of formation 4-hydroxy-5-methyl-3(2//)-furanone, a component of beef flavor, from Amadori products. J. Agric. Food Chem., V. 23, P. 957−960.
  32. Т., Olsson K., Pernemalm P.A. (1983) Strecker degradation products from (l-13C)-D-glucose and glycine. ACS Symp. Ser., V. 215, P. 71−82.
  33. H., Tsuchida H. (1981) Estimation of melanoidin structure by pyrolysis and oxidation. Prog. FoodNutr. Sci., 5,147−156.
  34. A., Leoncini G., Siri A., Ricci D. (1973) Polymerization of methylglyoxal in the presence of lysine. Ital. J. Biochem., V. 22 (1), P. 55−63.
  35. A., Leoncini G., Ricci D., Siri A., Bignardi G. (1973) Properties of the polymer formed from methylglyoxal in the presence of lysine. Ital. J. Biochem., V. 22 (2), P. 105−116.
  36. A., Leoncini G., Audisio G., Zetta L., Ferruti P. (1977) Characterization of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Ital J. Biochem., V. 26 (2), P. 162−168.
  37. G., Zetta L., Ferruti P., Leoncini G., Bonsignore A. (1981) The structure of the polymer formed from methylglyoxal in the presence of L(+)-lysine. Biomaterials, V. 2, P. 166−170.
  38. Benzing-Purdie L.M., Ratcliff C.I. (1986) A study of the Maillard reaction by 13C and 15N CP-MAS NMR: Influence of time, temperature, and reactants on major products. Dev. Food Sci., V. 13, P. 193−205.
  39. Kato H., Kim S.B., Hayase F. (1986) Estimation of the partial chemical structures of melanoidins by oxidative degradation and 13C CP-MAS NMR. Dev. Food Sci., N. 13, P. 215−223.
  40. Kim S.B., Hayase F., Kato H. (1985) Decolorization and degradation products of melanoidins on ozonolysis. Agric. Biol. Chem., V. 49, P. 785−792.
  41. H., Yasumoto K., Yokoyama K. (1965) Studies on the free radical in amino-carbonyl reaction. Agric. Biol. Chem., V. 29, P. 751−756.
  42. V.P., Froncsz W., Kharitonenkov I.G., Kalmanson A.E. (1970) Electron paramagnetic resonance study of free radical products of the reaction of ninhydrin with amino acids, peptides, and protein. Biochim. Biophys. Acta, V. 200, P. 160−167.
  43. G., Kertesz J.C., Laki K. (1980) Interaction of methylglyoxal with poly-L-lysine. Biomaterials, V. 1, P. 27−29.
  44. C. (1964) Formation of stable free radicals in alkaline solutions of some monosaccharides. Acta Chem. Scand, V. 18, P. 1321−1324.
  45. Yim H.S., Kang S.-O., Hah Y.C., Chock P.B., Yim M.B. (1995) Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J. Biol Chem., V. 270, P. 28 228−28 233.
  46. F.H., Chichester C.O., Rooney C.S. (1952) Carbon dioxide production in the browning reaction. J. Amer. Chem. Soc., V. 74, P. 3194−3196.
  47. H.F., Higgins P.J. (1981) Reaction of monosaccharides with proteins: possible evolutionary significance. Science, V. 213, P. 222−224.
  48. S.H., Zent J.B. (1984) Maillard browning in common amino acids and sugars. J. FoodSci., V. 49, P. 1206−1207.
  49. M., Baltes W. (1979) Investigations on the reaction of amino acids with a-dicarbonyl compounds. I. Reactivity of amino acids in the reaction with a-dicarbonyl compounds. Z. Lebensm.-Unters.-Forsch., V. 168, P. 368−373.
  50. Hwang H.-I., Hartman T.G., Ho C.-T. (1995) Relative reactivities of amino acids in pyrazines formation. J. Agric. Food Chem., V. 43, P. 179−184.
  51. Hwang H.-I., Hartman T.G., Ho C.-T. (1995) Relative reactivities of amino acids in the formation of pyridines, pyrroles, and oxazoles. J. Agric. Food Chem., V. 43, P. 2917−2921.
  52. E.H., Puigserver A. (1999) Nonenzymatic browning reaction of essential amino acids: effect of pH on caramelization and Maillard reaction kinetics. J. Agric. Food Chem., V. 47, P. 1786−1793.
  53. N., Hatate H., Mizumoto I., Namiki M. (1998) Chemiluminescent products of the Maillard reaction: studies on model systems. Spec. Publ. R. Soc. Chem., V. 223, P. 113−118.
  54. Wondrak G, Pier T, Tressl R. (1995) Light from Maillard Reaction: photon counting, emission spectrum, photography and visual perception. J. Biolumin. Chemilumin., V. 10, P. 277−284.
  55. Kurosaki Y, Sato H, Mizugaki M. (1989) Extra-weak chemiluminescence of drug. VIII. Extra-weak chemiluminescence arising from the amino-carbonyl reaction. J. Biolumin. Chemilumin., V. 3, P. 13−19.
  56. Namiki M., Oka M., Otsuka M., Miyazawa Т., Fujimoto K., Namiki K. (1993) Weak chemiluminescence at an early stage of Maillard reaction. J. Agric. Food Chem., V. 41, P. 1704−1709.
  57. Lertsiri S, Fujimoto K, Miyazawa T. (1995) Pyrone hydroperoxide formation during the Maillard reaction and its implication in biological systems. Biochim. Biophys. Acta, V. 1245, P. 278−284.
  58. H., Okuhara A., Iguchi N. (1981) Oxygen-dependent browning of soy sauce and some brewed products. Prog. FoodNutr. Sci., V. 5, P. 93−113.
  59. H. (1986) Oxidative browning of Amadori compounds. Color formation by iron with Maillard reaction products. Dev. Food Set, V. 13, P. 155 164.
  60. R., Ikeda K., Kawasaki Y., Sano H., Yoshida M., Araki Т., Ueda S., Horiuchi S. (1998) Conversion of Amadori product of Maillard reaction to Ne-(carboxymethyl)lysine in alkaline condition. FEBSLett., V. 425, P. 355−360.
  61. G.S., Carson J.F. (1995) Effects of trace metals, oxygen and light on the glucose-glycine browning reaction. Nature, V. 175, P. 470−471.
  62. F., Shibuya Т., Sato J., Yamamoto M. (1996) Effects of oxygen and transition metals on the advanced Maillard reaction of proteins with glucose. Biosci. Biotech. Biochem., V. 60, P. 1820−1825.
  63. H.G., Wallenius G. (1955) Science, V. 122, P. 288.
  64. R.J., Peterson C.M., Kilo C., Cerami A., Williamson J.R. (1976) Hemoglobin Ale as an indicator of the degree of glucose intolerance in diabetes. Diabetes, V. 25, P. 230−232.
  65. R., Winterhalter K.H. (1976) In vitro synthesis of hemoglobin Ale. FEBSLett., V. 71, P. 356−360.
  66. Shapiro R., McManus M.J., Zalut C., Bunn H.F. (1980) Sites of nonenzymatic glycosylation of human hemoglobin A. J. Biol. Chem., V. 255, P. 3120−3127.
  67. А.Г. (1996) Изнанка метаболизма. Биохимия, Т. 61, С. 20 182 039.
  68. Day J.F., Thorpe S.R., Baynes J.W. (1979) Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J. Biol. Chem., V. 254, P. 595−597.
  69. R., Wieland O.H. (1979) Glycosylation of serum albumin: elevated glycosyl-albumin in diabetic patients. FEBS Lett., V. 103, P. 282−286.
  70. В., Baenziger J., Schonfeld G., Jacobson D., Farrar P. (1981) Nonenzymatic glycosylation of low density lipoproteins in vitro. Effects on cell-interactive properties. Diabetes, V. 30, P. 875−878.
  71. S.P., Bailey A.J. (1972) Age-related changes in collagen: the identification of reducible lysine-carbohydrate condensation products. Biochem. Biophys. Res. Commun., V. 48, P. 76−84.
  72. V.J., Rouzer C.A., Monnier V.M., Cerami A. (1978) Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc. Natl. Acad. Sci. USA, V. 75, P. 2918−2922.
  73. A., Garner W.H., Spector A. (1979) Glucosylation of human lens protein and cataractogenesis. Biochem. Biophys. Res. Commun., V. 89, P. 12 601 266.
  74. K.C., Parks R.E., Widness J.A., Schwartz R. (1985) Nonenzymatic glycosylation of erythrocytic proteins in normal and diabetic subjects. Enzymes of nucleoside and nucleotide metabolism. Diabetes, V. 34, P. 251−255.
  75. Т., Murakami K., Ohtsuka Y., Tsuji M., Gasa S., Taniguchi N., Kawakami Y. (1987) Estimation and characterization of glycosylated carbonic anhydrase I in erythrocytes from patients with diabetes mellitus. Clin. Chim. Acta, V. 166, P. 227−236.
  76. K., Maguchi S., Fujii S., Ishibashi H., Oikawa K., Taniguchi N. (1987) Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites. J. Biol. Chem., V. 262, P. 16 969−16 972.
  77. H., Brownlee M., Cerami A. (1983) Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes, V. 32, P. 670−674.
  78. R., Model P., Cerami A. (1984) Modification of DNA by reducing sugars: a possible mechanism for nucleic acid aging and age-related dysfunction in gene expression. Proc. Natl. Acad. Sci. USA, V. 81, P. 105−109.
  79. Papoulis A., Al-Abed Y., Bucala R. (1995) Identification of N2-(l-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product. Biochemistry, V. 34, P. 648−655.
  80. L., Szabados L., Mester K., Yadav H. (1981) Maillard type carbonyl-amine reactions in vivo and their physiological effects. Progr. Food Nutr. Sci., V. 5, P. 295−314.
  81. McPherson J.D., Shilton B.H., Walton D.J. (1988) Role of fructose in glycation and cross-linking of proteins. Biochemistry, V. 27, P. 1901−1907.
  82. Lai S., Szwergold B.S., Taylor A.H., Randall W.C., Kappler F., Wells-Knecht K., Baynes J.W., Brown T.R. (1995) Metabolism of fructose-3-phosphate in the diabetic rat lens. Arch. Biochem. Biophys., V. 318, P. 191−199.
  83. B.J., Olesen P.R. (1988) Ascorbic acid-induced crosslinking of lens proteins: evidence supporting a Maillard reaction. Biochim. Biophys. Acta, V. 956, P. 10−22.
  84. S.H., Feather M.S., Ortwerth B.J. (1990) Glycation of lens proteins by the oxidation products of ascorbic acid. Biochim. Biophys. Acta, V. 1038, P. 367−374.
  85. S.K., Monnier V.M. (1991) Mechanism of formation of the Maillard protein cross-link pentosidine. Glucose, fructose, and ascorbate as pentosidine precursors. J. Biol Chem., V. 266, P. 11 649−11 653.
  86. Cervantes-Laurean D., Minter D.E., Jacobson E.L., Jacobson M.K. (1993) Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry, V. 32, P. 1528−1534.
  87. Cervantes-Laurean D., Loflin P.Т., Minter D.E., Jacobson E.L., Jacobson M.K. (1995) Protein modification by ADP-ribose via acid-labile linkages. J. Biol. Chem., V. 270, P. 7929−7936.
  88. R., Cerami A. (1985) Non-enzymatic modification of proteins by steroids: pathological implications for autoimmunity and glucocorticoid toxicity. Bioessays, V. 3, P. 55−59.
  89. K. (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic. Biol Med, V. 28, P. 1685−1696.
  90. M.A., Monnier V.M. (1995) Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol, Chem., V. 270, P. 10 017−10 026.
  91. R.N., Shipanova I.N., Faust F.M. (1996) Protein cross-linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine-lysine cross-link derived from methylglyoxal. J. Biol. Chem., V. 271, P. 1 933 819 345.
  92. F.A., Partal A., Sady C., Glomb M.A., Nagaraj R.H. (1998) Immunological evidence for methylglyoxal-derived modifications in vivo. Determination of antigenic epitopes. J. Biol. Chem., V. 273, P. 6928−6936.
  93. Lee C., Yim M.B., Chock P.B., Yim H.-S., Kang S.-O. (1998) Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. J. Biol. Chem., V. 273, P. 25 272−25 278.
  94. Oya Т., Hattori N., Mizuno Y., Miyata S., Maeda S., Osawa Т., Uchida K.1999) Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J. Biol. Chem., V. 274, P. 18 492−18 502.
  95. Okado-Matsumoto A., Fridovich I. (2000) The role of a,/J-dicarbonyl compounds in the toxicity of short chain sugars. J. Biol. Chem., V. 275, P. 3 485 334 857.
  96. H., Schaur J.S., Zollner H. (1991) Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic. Biol. Med., V. 11, P. 81−128.
  97. Fu M.-X., Requena J.R., Jenkins A.J., Lyons T.J., Baynes J.W., Thorpe S.R. (1996) The advanced glycation and products, //-(carboxymethy^lysine, is a product of both lipid peroxidation and glycation reactions. J. Biol. Chem., V. 271, P. 9982−9986.
  98. Thornalley P, Wolff S, Crabbe J, Stern A. (1984) The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim. Biophys. Acta., V. 797, P. 276−287.
  99. S.P., Dean R.T. (1987) Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem. J., V. 245, P. 243−250.
  100. Dean R.T., Fu S., Stocker R. and Davies M.J. Biochemistry and radical-mediated protein oxidation. Biochem. J. (1997) 324, 1−18.
  101. R.L., Williams J.A., Stadtman E.R., Shacter E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods. Enzymol., N. 233, P. 346−357.
  102. Cao G., Cutler R.G. (1995) Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch. Biochem. Biophys., N. 320, P. 106−114.
  103. L., Evans P.J., Shaw P.J., Ince P.G., Halliwell B. (1996) Oxidative damage and motor neurone disease difficulties in the measurement of protein carbonyls in human brain tissue. Free Radic. Res., N. 24, P. 397−406.
  104. P.J. (1990) The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J., N. 269, P. 1−11.
  105. J.P. (1991) Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance. Biochemistry., N. 30, P. 4581−4585.
  106. Ferguson G.P., Totemeyer S., MacLean M.J., Booth I.R. (1998) Methylglyoxal production in bacteria: suicide or survival? Arch. Microbiol., N. 170, P. 209−219.
  107. McLellan A.C., Philips S.A., Thornalley P.J. (1992) The assay of methylglyoxal in biological systems by derivatization with l, 2-diamino-4,5-dimethoxybenzene. Anal. Biochem., N. 206, P. 17−23.
  108. Chaplen F.W.R., Fahl W.E., Cameron D.C. (1998) Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA, N. 95, P. 5533−5538.
  109. Chaplen F.W.R., Fahl W.E., Cameron D.C. (1996) Method for determination of free intracellular and extracellular methylglyoxal in animal cells grown in culture. Anal. Biochem., V. 238, P. 171−178.
  110. Szent-Gyorgyi A., Egyild L.G., McLaughlin J.A. (1967) Keto-aldehydes and cell division: glyoxal derivatives may be regulators of cell division and open a new approach to cancer. Science, V. 155, P. 539−541.
  111. Vander Jagt D.L., Robinson R., Taylor K.T., Hunsaker L A. (1992) Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem., V. 267, P. 4364−4369.
  112. M., Fujii J., Teshima Т., Suzuki K., Shiba Т., Taniguchi N. (1993) Identity of a major 3-deoxyglucosone-reducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene, V. 127, P. 249−253.
  113. Lindstad R.I., McKinley-McKee J.S. (1993) Methylglyoxal and the polyol pathway. Three-carbon compounds are substrates for sheep liver sorbitol dehydrogenase. FEBSLett., V. 330, P. 31−35.
  114. Kato H., van Chuyen N., Utsunomiya N., Okitani A. (1986) Changes of amino acids composition and relative digestibility of lysozyme in the reaction with a-dicarbonyl compounds in aqueous system. J. Nutr. Sci. Vitaminol., V. 32, P. 5565.
  115. S., Ulrich P.C., Bencsath F.A., Cerami A. (1984) Aging of proteins: isolation and identification of a fluorescent chromophore from thereaction of polypeptides with glucose. Proc. Natl. Acad. Sci. USA, V. 81, P. 26 842 688.
  116. D.R., Monnier V.M. (1989) Structure elucidation of a senescence cross-link from human extracellular matrix. J. Biol. Chem., V. 264, P. 2 159 721 602.
  117. M.U., Thorpe S.R. Baynes J.W. (1986) Identification of N8-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., V. 261, P. 4889−4894.
  118. Wells-Knecht K.J., Brinkmann E., Baynes J.W. (1995) Characterization of an imidazolium salt formed from glyoxal and Na-hippuryllysine: a model for Maillard reaction crosslinks in proteins. J. Org. Chem., V. 60, P. 6246−6247.
  119. Wells-Knecht K.J., Brinkmann E., Wells-Knecht M.C., Litchfield J.E., Ahmed M.U., Reddy S., Zyzak D.V., Thorpe S.R., Baynes J.W. (1996) New biomarkers of Maillard reaction damage to proteins. Nephrol. Dial. Transplant., V. 11 (Suppl. 5), V. 41−47.
  120. Brinkmann E., Wells-Knecht K.J., Thorpe S.R., Baynes J.W. (1995) Characterization of an imidazolium compound formed by reaction of methylglyoxal and Na-hippuryllysine. J. Chem. Soc., Perkin Trans., V. 1, P. 28 172 818.
  121. Shilton B.H. and Walton D.J. Sites of glycation of human and horse liver alcohol dehydrogenase in vivo. (1991) J. Biol. Chem., V. 266, P. 5587−5592.
  122. F., Nagaraj R.H., Miyata S., Njoroge F.G., Monnier V.M. (1989) Aging of proteins: immunological detection of a glucose-derived pyrrole formed during Maillard reaction in vivo. J. Biol. Chem., V. 264, P. 3758−3764.
  123. H., Taneda S., Kuwajima S., Aoki S., Kuroda Y., Misawa K., Nakagawa S. (1989) Production and characterization of antibodies to advanced glycation products on proteins. Biochem. Biophys. Res. Commun., V. 162, P. 740 745.
  124. S., Araki N., Morino Y. (1991) Immunochemical approach to characterize advanced glycation end products of the Maillard reaction. Evidence for the presence of a common structure. J. Biol. Chem., V. 266, P. 7329−7332.
  125. H., Brownlee M., Cerami A. (1985) High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc. Natl. Acad. Sci. USA, V. 82, P. 5588−5592.
  126. S., Murakami M., Takata K., Morino Y. (1986). Scavenger receptor for aldehyde-modified proteins. J. Biol. Chem., V. 261, P. 4962−4966.
  127. Li J.J., Dickson D., Hof P.R., Vlassara H. (1998) Receptors for advanced glycosylation end products in human brain: role in brain homeostasis. Mol. Med., V. 4, P. 46−60.
  128. Wu V.Y., Cohen M.P. (1993) Identification of aortic endothelial cell binding proteins for Amadori adducts in glycated albumin. Biochem. Biophys. Res. Commun., V. 193, P. 1131−1136.
  129. Miyata Т., Ueda Y., Horie K., Nangaku M., Tanaka S., van Ypersele de Strihou C., Kurokawa К (1998) Renal catabolism of advanced glycation end products: the fate of pentosidine. Kidney Int., V. 53, P. 416−422.
  130. M., Pischetsrieder M., Monnier V.M. (1997) Isolation, purification, and characterization of amadoriase isoenzymes (fructosyl amine-oxygen oxidoreductase EC 1.5.3) from Aspergillus sp. J. Biol. Chem., V. 272, P. 3437−3443.
  131. V.M., Cerami A. (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science, V. 211, P. 491−493.
  132. S., Kohn R.R. (1981) Effects of age and diabetes mellitus on the solubility and nonenzymatic glucosylation of human skin collagen. J. Clin. Invest., V. 67, P. 1630−1635.
  133. G., Hunter A.J., Charonis A.S. (1995) Matrix nonenzymatic glycosylation leads to altered cellular phenotype and intracellular tyrosine phosphorylation. J. Biol. Chem., V. 270, P. 3278−3283.
  134. R.G., Bailey A.J. (1999) The effect of advanced glycation end-product formation upon cell-matrix interactions. Int. J. Biochem. Cell Biol., V. 31, P. 653−660.
  135. M.S., Raposo J., Falcro J., Fontes G., Manso C. (1988) Oxygen radical generation by Maillard compounds. J. Diabet. Complications, V. 2, P. 1921.
  136. B.J., James H., Simpson G., Linetsky M. (1998) The generation of superoxide anions in glycation reactions with sugars, osones, and 3-deoxyosones. Biochem. Biophys. Res. Commun., V. 245, P. 161−165.
  137. C.J., Edelstein D., Brownlee M. (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem. Biophys. Res. Commun., V. 173, P. 932−939.
  138. Z.Y., Woollard A.C., Wolff S.P. (1990) Hydrogen peroxide production during experimental protein glycation, FEBS Lett., V. 268, P. 69−71.
  139. Т., Sugioka K., Nakano M. (1990) 02--generation and lipid peroxidation during the oxidation of a glycated polypeptide, glycated polylysine, in the presence of iron-ADP. Biochim. Biophys. Acta, V. 1043, P. 27−33.
  140. A., Glomb M., Friedlander M., Monnier V.M. (1996) Involvement of hydrogen peroxide in collagen cross-linking by high glucose in vitro and in vivo. J. Biol. Chem., V. 271, P. 12 964−12 971.
  141. G.T., Varadarajan S., Butterfield D.A., Jacobson M.K. (2000) Formation of a protein-bound pyrazinium free radical cation during glycation of histone HI. Free Radic. Biol. Med., V. 29, P. 557−567.
  142. K.N., Takahashi M., Higashiyama S., Myint Т., Uozumi N., Kayanoki Y., Kaneto H., Kosaka H., Taniguchi N. (1995) Fragmentation of ceruloplasmin following non-enzymic glycation reaction. J. Biochem., V. 118, P. 1054−1060.
  143. V., Menasche M., Ferrari P., Fraisse L., Pouliquen Y., Robert L. (1998) Free radical depolymerization of hyaluronan by Maillard reaction products: role in liquefaction of aging vitreous. Int. J. Biol. Macromol., V. 22, P. 17−22.
  144. T.J. (1993) Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am. J. Cardiol, V. 71, P. 26B-31B.
  145. McCord J.M. (1995) Superoxide radical: controversies, contradictions, and paradoxes. Proc. Soc. Exp. Biol. Med., N. 209, P. 112−117.
  146. И.А., Клюбин И. В. (1996) Перекись водорода как сигнальная молекула. Цитология, Т. 38, С. 1233−1247.
  147. В.М. (1997) Superoxide: a two-edged sword. Braz. J. Med. Biol. Res., N. 30, P. 141−155.
  148. M., Michel C., Bors W. (1998) Radical functions in vivo: a critical review of current concepts and hypotheses. Z. Naturforsch., N. 53c, P. 210−227.
  149. H., Hirata H. (1999) Redox regulation of cellular signalling. Cell. Signal, V. 11, P. 1−14.
  150. V.L. (2001) Reactive oxygen species, water, photons, and life. Rivista di Biologia/Biological forum, V. 94, P. 193−214.
  151. I. (1998) Oxygen toxicity: a radical explanation. J. Exp. Biol, N. 201, P. 1203−1209.
  152. Valentine J.S., Wertz D.L., Lyons T.J., Liou L.-L., Goto J.J., Gralla E.B. (1998) The dark side of dioxygen biochemistry. Curr. Opin. Chem. Biol., V. 2, P. 253−262.
  153. J.A., Fridovich I. (1991) Assay of metabolic superoxide production in Escherichia coli. J. Biol Chem., V. 266, P. 6957−6965.
  154. A.R., Shaikh A.U., Harbison R.D., Hinojosa O. (1991) Extraction and analysis of superoxide free radicals from whole mammalian liver. J. Biolumin. Chemilumin., V. 6, P. 87−96.
  155. В.П. (1995) Нефосфорилирующее дыхание как механизм, предотвращающий образование активных форм кислорода. Молекулярная биология, Т. 29, С. 1199−1209.
  156. M.S., Ragan C.I., Iversen L.L. (1994) Proc. Natl. Acad. Sci. USA, V. 91, P. 1470−1474.
  157. Li J., Schmidt A.M. (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J. Biol. Chem., V. 272, P. 16 498−16 506.
  158. Yang C.W., Vlassara H., Peten E.P., He C.J., Striker G.E., Striker L. (1994) Advanced glycation end products up-regulate gene expression found in diabetic glomerular disease. Proc. Natl. Acad. Sci. USA, V. 91, P. 9436−9440.
  159. J., Menzel E.J. (1995) Proteins lose their nitric oxide stabilizing function after advanced glycosylation. Biochim. Biophys. Acta, V. 1245, P. 305 310.
  160. Chakravarthy U., Hayes R.G., Stitt A.W., McAuley E., Archer D.B. (1998) Constitutive nitric oxide synthase expression in retinal vascular endothelial cells is suppressed by high glucose and advanced glycation end products. Diabetes, V. 47, P. 945−952.
  161. U., Eichner K. (1995) The antioxidative effect of Maillard reaction products in model systems and roasted hazelnuts. Fett Wiss. Technol., V. 97, P. 435−444.
  162. Y., Iijima Т., Watanabe Т., Nakazawa H. (1997) Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem., V. 45, P. 4106−4109.
  163. A.N., Kitts D.D. (1998) Metal chelating and antioxidant activity of model Maillard reaction products. Adv. Exp. Med. Biol., V. 434, P. 245 254.
  164. N.V., Ijichi K., Umetsu H., Moteki K. (1998) Antioxidative properties of products from amino acids or peptides in the reaction with glucose. Adv. Exp. Med. Biol., V. 434, P. 201−212.
  165. А.И. (1983) Спонтанная биохемилюминесценция животных тканей. В кн.: Биохемилюминесценция. М.: Наука, С. 3−30. (Тр. МОИП- Т. 58).
  166. A.K. (1988) Chemiluminescence: principles and applications in biology and medicine. Chichester: Ellis Horwood.
  167. K., Worsfold P.J. (1992) Analytical applications of liquid-phase chemiluminescence. Anal. Chim. Acta, V. 266, P. 147−173.
  168. А.Г., Гурвич Jl.Д. (1945) Митогенетическое излучение. М.: Изд. Наркомздрава СССР.
  169. W.W. (1933) Nekrobiotische Strahlen I. Protoplasma, V. 20, P. 232.
  170. Л.A. (1937) Фотоэлементы и элементы со вторичной эмиссией. Техническая физика, Сер. 4, Вып. 1, С. 7−19.
  171. L., Facchini U. (1954) Light emission by germinating plants. Nuovo cimento, V. 12, P. 150.
  172. .Н., Поливода А. И., Журавлев А. И. (1961) Обнаружение хемилюминесценции в печени облученных мышей. Радиобиология, Т. 1, С. 150−151.
  173. .Н., Поливода А. И., Журавлев А. И. (1961) Изучение сверхслабой спонтанной люминесценции животных клеток. Биофизика, Т. 6, С. 490−492.
  174. Р.Ф., Карпухин О. Н., Шляпинтох В. Я. (1961) Установка для измерения слабых световых потоков. Журн. физ. химии, Т. 35, С. 461−462.
  175. Ю.А., Львова О. Ф. (1964) Сверхслабое свечение и окислительное фосфорилирование в митохондриях. Биофизика, Т. 9, С. 506 507.
  176. В .Я., Карпухин О. Я., Постников JI.M. и др. (1966) Хемилюминесцентные методы исследования медленных химических процессов. М.: Наука.
  177. Н.Г., Бурлакова Е. Б. (1972) Хемилюминесцентный метод определения природных антиоксидантов в липидах. В кн.: Сверхслабые свечения в биологии. М.: Наука, С. 153−157. (Тр. МОИП- Т. 39).
  178. И.И. (1983) Хемилюминесценция при фото- и радиационном окислении белков и других веществ. В кн.: Биохемилюминесценция. М.: Наука, С. 56−69. (Тр. МОИП- Т. 58).
  179. Р.Ф. (1983) Пути возбуждения хемилюминесценции органических соединений. В кн.: Биохемилюминесценция. М.: Наука, С. 31−55. (Тр. МОИП- Т. 58).
  180. G., Adam W. (1995) From free radicals to electronically excited species. Free Rad. Biol. Med., V. 19, P. 103−114.
  181. De La Fuente U., Lissi E.A. (1992) Excited carbonyl formation in the combination and disproportionation of free radicals. J. Biolumin. Chemilumin., V. 7, P. 27−35.
  182. Pires de Melo M., Cilento G. (1994) Chemiexcitation in the peroxidative metabolism of iV-methylcarbazole: Mechanistic implications. Photochem. Photobiol., V. 59, P. 677−682.
  183. Niu Q., Mendenhall D. (1990) Structural effects on the yields of singlet molecular oxygen (.Ag02) from alkyl peroxyl radical recombination. J. Amer. Chem. Soc., V. 112, P. 1656−1657.
  184. Cadenas E, Boveris A, Chance B. (1980) Low-level chemiluminescence of hydroperoxide-supplemented cytochrome C. Biochem. J., V. 187, P. 131−140.
  185. J., Galezowski W., Elbanowski M. (1981) Biochem. Biophys. Acta, V. 637, P. 130−137.
  186. Barnard M.L., Gurdian S., Diep D., Ladd M., and Turrens J.F. (1993) Protein and amino acid oxidation is associated with increased chemilummescence. Arch. Biochem. Biophys., V. 300, P. 651−656.
  187. В.И., Баскаков И. В. (1995) Изучение кинетики хемилюминесценции в водных растворах аминокислот в присутствии перекиси водорода и бромистого этидия. Биофизика, Т. 40, С.1151−1157.
  188. Medeiros M.H.G., Sies Н. (1989) Chemiluminescent oxidation of ribose catalyzed by horseradish peroxidase in presence of hydrogen peroxide. Free Radic. Biol. Med., V. 6, P. 565−571.
  189. P.J. (1971) Type II photoelimination and photocyclization of ketones. Acc. Chem. Res., V. 4, P. 168−177.
  190. E.H., Miano J.D., Watkins J., Breaux E.J. (1974) Chemically excited states. Angew. Chem. Int. Ed. Engl., V. 13, P. 229−243.
  191. G., Adam W. (1988) Photochemistry and photobiology without light. Photochem. Photobiol., V. 48, P. 361−368.
  192. И.В., Воейков В.Jl. (1996) Роль электронно-возбужденных состояний в биохимических процессах. Биохимия, Т. 61, С. 1169−1181.
  193. Brunetti I.L., Bechara E.J.H., Cilento G., White E.H. (1982) Possible in vivo formation of lumicolchicines from colchicine by endogenously generated triplet species. Photochem. Photobiol., V. 36, P. 245−249.
  194. Venema R.C., Hug D.H. (1985) Activation of urocanase from Pseudomonas putida by electronically excited triplet species. J. Biol. Chem., V. 260, P. 12 190−12 193.
  195. M., Bors W. (1994) Signalling by 02~ and NO : how far can either radical, or any specific reaction product, transmit a message under in vivo conditions? Chem.-Biol. Intreact., V. 90, P. 35−45.
  196. B.E. (1984) Chemiluminescence method for estimation of autoxidation in foods: interfering reactions. In: Analytical Application of
  197. Bioluminescence and Chemiluminescence. New York: Academic Press, P. 577 579.
  198. Y., Sato H., Mizugaki M. (1991) Extra-weak chemiluminescence of drug. XI. Quenching effect of purine and pyrimidine derivatives on the extra-weak chemiluminescence derived from the Maillard Reaction. J. Biolumin. Chemilumin., V. 6, P. 6−12.
  199. Kurosaki Y, Sato H, Ishizawa F, Mizugaki M. (1991) Extra-weak chemiluminescence of drug. XII. Effect of the molar ratio of amino acid to sugar on extra-weak chemiluminescence in the Maillard Reaction. J. Biolumin. Chemilumin., V. 6, P. 185−188.
  200. B.W. (1997) Ultraweak chemiluminescence arising from glutaraldehyde-induced cross-linking reactions of biomolecules. J. Biolumin. Chemilumin., V. 12, P. 233−239.
  201. M., Sato H. (1989) Activated oxygen and the Maillard reaction. Chem. Jnd, V. 42, P. 2045−2047.
  202. A.M. (1974) Концентрационные автоколебания. M: Наука.
  203. I.R., Showalter К. (1996) Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem., V. 100, P. 13 132−13 147.
  204. I. (1955) Thermodynamics of irreversible processes. New York: John Wiley and Sons.
  205. .П. (1959) Периодически действующая реакция и ее механизм. В кн.: Рефераты по радиационной медицине за 1958 год. М.: Медгиз, С. 145−147.
  206. A.T., Calvin M. (1955) The photosynthetic cycle. C02-dependent transients. J. Amer. Chem. Soc., V. 77, P. 5948−5957.
  207. Duysens L.N.M., Amesz J. (1957) Fluorescence spectrophotometry of reduced phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim. Biophys. Acta, V. 24, P. 19−26.
  208. С.Э. (1958) О самопроизвольных переходах препаратов актомиозина из одного состояния в другое. Вопросы медицинской химии, Т. 4, С. 443.
  209. A., Chance В. (1964) Oscillations of glycolytic intermediates in yeast cells. Biochem. Biophys. Res. Commun., V. 16, P. 174−181.
  210. В., Hess В., Betz A. (1964) DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem. Biophys. Res. Commun., V. 16, P. 182−187.
  211. F.A. (1964) Oscillatory reductions of pyridine nucleotides during anaerobic glycolysis in brewer’s yeast. Arch. Biochem. Biophys., V. 108, P. 26−46.
  212. A.M. (1964) Периодический ход окисления малоновой кислоты в растворе (исследование кинетики реакции Белоусова). Биофизика, Т. 9, С. 306−311.
  213. В.А., Романовский Ю. М., Яхно В. Г. (1979) Автоволновые процессы в распределенных кинетических системах. Успехи физических наук, Т. 128, С. 625−666.
  214. R.J., Koros Е., Noyes R.M. (1972) Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. J. Amer. Chem. Soc., V. 94, P. 8649−8664.
  215. R.A., Graziani K.R., Hudson J.L. (1977) Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction. J. Chem. Phys., V. 67, P. 3040−3044.
  216. De Kepper P., Kustin K., Epstein I.R. (1981) A systematically designed homogeneous oscillating reaction: the arsenite-iodate-chlorite system. J. Amer. Chem. Soc., V. 103, P. 2133−2134.
  217. H.M., Хвилицкий Р. Я., Ениколопян H.C. (1972) О явлении распространения реакции полимеризации. Докл. АН СССР, Т. 204, № 5, С. 1180−1181.
  218. Castets V., Dulos Е., Boissonade J., De Kepper P. (1990) Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett., V. 64, P. 2953−2956.
  219. J., Yokota K., Nakajima R. (1965) Oscillatory oxidations of reduced pyridine nucleotide by peroxidase. Biochem. Biophys. Res. Commun., V. 21, P. 582−586.
  220. U., Valeur K.R., Baier G., Wegmann K., Olsen L.F. (1996) Oscillations in the peroxidase-oxidase reaction: a comparison of different peroxidases. Biochim. Biophys. Acta, V. 1289, P. 397−403.
  221. Scheeline A., Olson D.L., Williksen E.P., Horras G.A., Klein M.L., barter R. (1997) The peroxidase-oxidase oscillator and its constituent chemistries. Chem. Rev., V. 97, P. 739−756.
  222. Rapp Р.Е. An atlas of cellular oscillator. J. Exp. Biol. 1979, V. 81, P. 281 306.
  223. De Koninck P., Schulman H. (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science, V. 279, P. 227−230.
  224. D.E. (1995) Calcium Signaling. Cell, V. 80, P. 259−268.
  225. К. (1997) Are metabolic oscillations responsible for normal oscillatory insulin secretion? Diabetes, V. 46, P. 1375−1380.
  226. Jung S.-K., Kauri L.M., Qian W.-J., and Kennedy R.T. (2000) Correlated oscillations in glucose consumption, oxygen consumption, and intracellular free Ca2+ in single islets of Langerhans. J. Biol. Chem., V. 275, P. 6642−6650.
  227. H.R., Kindzelskii A.L. (2001) Dissipative metabolic patterns respond during neutrophil transmembrane signaling. Proc. Natl. Acad. Sci. USA, V. 98, P. 3145−3149.
  228. H. (1969) Compound III kinetics and chemiluminescence in oscillatory oxidation reactions catalyzed by horseradish peroxidase. Biochim. Biophys. Acta, V. 180, P. 271−290.
  229. Ю.М., Славинский Я. С. (1972) Хемилюминесценция и донорно-акцепторные свойства биологически важных соединений. В кн.: Сверхслабые свечения в биологии. М.: Наука, С. 60−67. (МОИП- т. 39).
  230. F., Balzani V. (1982) Oscillating chemiluminescence from the reduction of bromate by malonic acid catalysed by tris (2,2'-bipyridine) ruthenium (II). J. Am. Chem. Soc., V. 104, P. 4250−4251.
  231. A.D., Parshin G.S., Kazakov V.P., Tolstikov G.A. (1984) New autooscillation chemiluminescence reaction of 4-oxyquinoline oxidation by bromate ions. React. Kinet. Catal. Lett., V. 25, P. 345−347.
  232. H., Ritshel H., Weigt H.R., Junghahnel G. (1983) Oszillierende Chemilumineszenz und Photolumineszenz. Unter-Suchungen zurn Iautooszillierenden Chemilumineszenz im Mn -Katalysierten Belousov-Zhabotinskii (B-Z) System. Z. Chem., B. 23, S. 224−225.
  233. A.I., Trainin V.M. (1990) Chemiluminescent reactions in the Belousov-Zhabotinskii oscillating system. J. Biolumin. Chemilumin., V. 6, P. 227 234.
  234. Lissi E.A., Escobar J., Pascual C., del Castillo M., Schmitt Т.Н., Di Mascio P. (1994) Visible chemiluminescence associated with the reaction betweenmethemoglobin or oxyhemoglobin with hydrogen peroxide. Photochem. Photobiol., V. 60, P. 405−411.
  235. N., Inaba H. (1993) Oscillatory low-level chemiluminescence from a nonequilibrium-nicotinamide adenine dinucleotide peroxidase system: experimental observations and computer simulations. Photochem. Photobiol., V. 57, P. 570−576.
  236. Usa M., Kobayashi M., Scott R.Q., Maeda Т., Hiratsuka R., Inaba H. (1989) Simultaneous measurement of biophoton emission and biosurface electric potential from germinating soybean (Glycine max). Protoplasma, V. 149, P. 64−66.
  237. A.C., Темникова Т. И. (1991) Теоретические основы органической химии. JL: Химия.
  238. М.М., Писаревский A.M., Полозова И. П. (1988) Окислительный потенциал. Л.: Химия.
  239. Швец-Тэнэта-Гурий Т.Б. (1980) Биоэлектрохимическая активность головного мозга. М.: Наука.
  240. Н.Н. (1986) Цепные реакции. М.: Наука.
  241. A.W., Thomas J.P., Jordan J.E. (1985) Prooxidant and antioxidant effects of ascorbate on photosensitized peroxidation of lipids in erythrocyte membranes., Photochem. Photobiol., V. 41, P. 267−276.
  242. М.Б. (1966) О противоположных тенденциях в механизме окислительной деструкции полимеров. В кн.: Химическая кинетика и цепные реакции. М.: Наука, С. 409−430.
  243. М., Koros Е. (1978) Chemical oscillations during the uncatalyzed reaction of aromatic compounds with bromate. 1. Search of chemical oscillators. J. Phys. Chem., V. 82, P. 1672−1674.1271. БЛАГОДАРНОСТИ
Заполнить форму текущей работой