ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎ-ΡΠΎΡΠΎΠ½Π½ΡΠ΅ ΠΊΠ°ΡΠΊΠ°Π΄Ρ.
ΠΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ
Π ΠΏΠΎΠ»Π½Π°Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ°Π²Π½Π° Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ°Ρ ΠΊΠ°ΠΆΠ΄ΡΠΉ «ΡΡΠ΅Π΄Π½ΠΈΠΉ» ΡΠΎΡΠΎΠ½ «ΠΆΠΈΠ²Π΅Ρ» ΠΎΠΊΠΎΠ»ΠΎ 1.3 ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΏΡΡΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠΌ ΠΈ ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ΠΎΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Ρ ΡΠ°Π²Π½ΠΎΠΉ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ ΠΏΠΎΠ»ΡΡΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡ 0.1 Π' ΠΈ ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ 0.9 Π', ΡΠ°Π²Π½Π° Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ ΠΏΠΎΠ»ΡΡΠΈΡ 0.9 Π', Π° ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ 0.1 Π', ΠΈΠ»ΠΈ ΡΠΎΠ³ΠΎ… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
ΠΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎ-ΡΠΎΡΠΎΠ½Π½ΡΠ΅ ΠΊΠ°ΡΠΊΠ°Π΄Ρ. ΠΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ (ΡΠ΅ΡΠ΅ΡΠ°Ρ, ΠΊΡΡΡΠΎΠ²Π°Ρ, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½Π°Ρ)
Π‘Π΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡΡ
Π ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ Π³Π»Π°Π²Π°Ρ Π±ΡΠ»ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ Π²ΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ, Π΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΠ΅ ΠΏΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡΡ Π·Π°ΡΡΠΆΠ΅Π½Π½ΡΡ ΡΠ°ΡΡΠΈΡ ΠΈ ΡΠΎΡΠΎΠ½ΠΎΠ² Ρ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎΠΌ. ΠΡΠΈ Π²ΡΡΠΎΠΊΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡΡ ΡΠ°ΡΡΠΈΡ (ΠΏΡΠΈ Π>Π΅ ΠΈ Π>ΠΠ ΡΠΊΡ) ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ:
- Π°) ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ² ΠΈ
- Π±) ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΡΠΎΠ½Π°ΠΌΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΏΠΎΠ·ΠΈΡΡΠΎΠ½Π½ΡΡ ΠΏΠ°Ρ.
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΎΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π΄Π»Ρ Π²ΡΠ΅Ρ Π²Π΅ΡΠ΅ΡΡΠ² ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ, ΠΎΡΠ΅Π½Ρ ΠΏΠΎΡ ΠΎΠΆΠΈΠΌΠΈ ΠΏΠΎ ΡΠΎΡΠΌΠ΅, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π΅ΡΠ»ΠΈ ΡΡΠΈ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΡ ΠΊ t0 -Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ (Ρ.Π΅. to-Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΏΡΠΈΠ½ΡΡΡ Π·Π° ΠΌΠ°ΡΡΡΠ°Π± Π΄Π»ΠΈΠ½Ρ), Ρ.ΠΊ. ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ Π² ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ Π²Π΅ΡΠ΅ΡΡΠ² ΡΡΡΠ΅Π½Ρ Π² Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ to-Π΅Π΄ΠΈΠ½ΠΈΡΡ.
ΠΠ΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π° ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ΠΌ ΡΠΎΡΠΎΠ½Π° ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π'Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (ΠΠ' + dE) Π½Π° 1 ΡΠΌ ΠΏΡΡΠΈ Π²ΠΎ Π²ΡΠ΅Ρ Π²Π΅ΡΠ΅ΡΡΠ²Π°Ρ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ:
Π° ΠΏΠΎΠ»Π½Π°Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠ°, Ρ. Π΅. Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½Π° 1 ΡΠΌ. ΠΏΡΡΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΎΡΠΎΠ½Π° Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΠΎΡ 0 Π΄ΠΎ Π Π±ΡΠ΄Π΅Ρ ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡΠ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΡΠΎΠ»ΡΠΈΠ½Π° Π²Π΅ΡΠ΅ΡΡΠ²Π° Π±ΡΠ΄Π΅Ρ ΠΈΠ·ΠΌΠ΅ΡΡΡΡΡΡ Π² ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , Ρ. Π΅. t = x/t0. ΠΠΎΡΡΠΎΠΌΡ ΡΠΎΡΠΌΡΠ»Π° ΠΏΡΠΈΠΎΠ±ΡΠ΅ΡΠ°Π΅Ρ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΉ Π²ΠΈΠ΄ ΡΠΎ «ΡΡΠ΅Π΄Π½ΠΈΠΉ» ΡΠ»Π΅ΠΊΡΡΠΎΠ½ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΡΠ΅ΡΡΠ΅Ρ Π²ΡΡ ΡΠ²ΠΎΡ ΡΠ½Π΅ΡΠ³ΠΈΡ, ΠΏΡΠΈΡΠ΅ΠΌ ΡΠ΅ΡΡΠ΅Ρ Π΅Π΅ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎ ΠΏΠΎ Π'/Π, Ρ. Π΅. ΠΏΠΎΡΠΎΠ²Π½Ρ Π² ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π²ΡΠΎΡΠΈΡΠ½ΡΡ ΡΠΎΡΠΎΠ½ΠΎΠ². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠΎΡΠΎΠ½ Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ 100 ΠΡΠ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ 10 ΡΠΎΡΠΎΠ½ΠΎΠ² Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΏΠΎ 10 ΠΡΠ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π²ΡΡΠΎΠΊΠΎΡΠ½Π΅ΡΠ³ΠΈΡΠ½ΡΠΌ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠΌ ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ ΡΠΎΡΠΎΠ½ Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ, ΡΡΠ°Π²Π½ΠΈΠΌΠΎΠΉ Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°.
ΠΠ΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π' ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π° Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ Π ΠΈ ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½Π° Ρ ΡΠ½Π΅ΡΠ³ΠΈΠ΅ΠΉ (Π'—- Π) Π½Π° 1 ΡΠΌ ΠΏΡΡΠΈ Π²ΠΎ Π²ΡΠ΅Ρ Π²Π΅ΡΠ΅ΡΡΠ²Π°Ρ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ :
Π° ΠΏΠΎΠ»Π½Π°Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ°Π²Π½Π° Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΡΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΠ°Ρ ΠΊΠ°ΠΆΠ΄ΡΠΉ «ΡΡΠ΅Π΄Π½ΠΈΠΉ» ΡΠΎΡΠΎΠ½ «ΠΆΠΈΠ²Π΅Ρ» ΠΎΠΊΠΎΠ»ΠΎ 1.3 ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΏΡΡΠΈ, ΠΏΡΠΈΡΠ΅ΠΌ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠΌ ΠΈ ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ΠΎΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Ρ ΡΠ°Π²Π½ΠΎΠΉ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ ΠΏΠΎΠ»ΡΡΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡ 0.1 Π' ΠΈ ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ 0.9 Π', ΡΠ°Π²Π½Π° Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ ΠΏΠΎΠ»ΡΡΠΈΡ 0.9 Π', Π° ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ 0.1 Π', ΠΈΠ»ΠΈ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ ΠΈ ΠΏΠΎΠ·ΠΈΡΡΠΎΠ½ ΠΏΠΎΠ»ΡΡΠ°Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ ΠΏΠΎ 0.5 Π '.
ΠΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΊΠ°Π·Π°Π½Π½ΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ²Π»ΡΡΡΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎ-ΡΠΎΡΠΎΠ½Π½ΡΡ ΠΊΠ°ΡΠΊΠ°Π΄ΠΎΠ² (ΠΠ€Π) ΠΏΡΠΈ Π²ΡΡΠΎΠΊΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡΡ .
Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»ΡΡ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°ΠΌΠΈ Ρ ΠΏΠΎΡΠ΅ΡΡΠΌΠΈ Π½Π° ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΡ, ΠΌΡ ΠΏΡΠΈΡΠ»ΠΈ ΠΊ Π²ΡΠ²ΠΎΠ΄Ρ, ΡΡΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π°ΠΌΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΡΠΌΠΈ, Π΅ΡΠ»ΠΈ ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ e Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ΅Π΄Ρ.
Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, ΠΏΡΠΎΡΠ΅ΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ Π½Π΅Π·Π°Π²ΠΈΡΡΡΠΈΠΌ ΠΎΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠΎΡΠΎΠ½ΠΎΠ² ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΠΊΡΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, Ρ. Π΅. ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΡ Π΄ΠΎΠ»ΠΆΠ½Π° Π±ΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΠΏΡΠΊΡ =137me-c Z. ΠΠΎ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° ΡΡΠ΅Π΄ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ e Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΠΏΠΆΡ. (ΡΠ°Π±Π»ΠΈΡΠ° 4.1).
Π’Π°Π±Π»ΠΈΡΠ° 4.1. Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ e ΠΈ ΠΠΏ ΡΠΊΡ .
ΠΠ΅ΡΠ΅ΡΡΠ²ΠΎ. | to, Π³/ΡΠΌ2 | Π, ΠΡΠ. | ΠΠΏ.ΡΠΊΡ., ΠΡΠ |
ΠΠΎΠ·Π΄ΡΡ . | 37.1. | 4 0. | |
Π£Π³Π»Π΅ΡΠΎΠ΄. | 43.3. | 38.5. | |
Π‘Π²ΠΈΠ½Π΅Ρ. | 6.4. | 7.4. |
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π²ΠΎΠ·Π΄ΡΡ Π° e > ΠΠΏΠΆΡ, Π° Π΄Π»Ρ ΡΠ²ΠΈΠ½ΡΠ° e < ΠΠΏΠΆΡ. ΠΡΠ΅Π΄Π΅Π»ΡΠ½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΎΡΠΌΠΎΠ·Π½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΏΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΎΠ±ΠΎΠΈΡ ΡΡΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ. ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π² Π»Π΅Π³ΠΊΠΈΡ Π²Π΅ΡΠ΅ΡΡΠ²Π°Ρ (Π²ΠΎΠ·Π΄ΡΡ Π΅, ΡΠ³Π»Π΅ΡΠΎΠ΄Π΅) e > ΠΠΏΡΠΊΡ, ΡΠΎ ΠΏΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΡΡ ΡΠ°ΡΡΠΈΡ ΠΠΏΡΠΊΡ <οΏ½Π < e Π½ΡΠΆΠ½ΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ Π΅ΡΡ ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΏΠΎΡΠ΅ΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ². Π ΡΡΠΆΠ΅Π»ΡΡ Π²Π΅ΡΠ΅ΡΡΠ²Π°Ρ ΠΠΏ ΡΠΊΡ. > e, ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΡΠΈ ΡΠ½Π΅ΡΠ³ΠΈΡΡ ΡΠ°ΡΡΠΈΡ Π < ΠΠΏΠΆΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠΎΡΠΎΠ½ΠΎΠ² Ρ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎΠΌ (ΠΊΠΎΠΌΠΏΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠ΅ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΠ΅ ΠΈ ΡΠΎΡΠΎΡΡΡΠ΅ΠΊΡ).