ΠΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΈ Π² ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΏΡΡ
ΠΌΠΎΠ³ΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ.
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² (ΡΠΈΡ. 1.9.1) ΡΠΈΠ»Π° ΡΠΎΠΊΠ° Π²ΠΎ Π²ΡΠ΅Ρ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Π°:
I1 = I2 = I.
Π ΠΈΡΡΠ½ΠΎΠΊ 1.9.1. ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΠΎ Π·Π°ΠΊΠΎΠ½Ρ ΠΠΌΠ°, Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U1 ΠΈ U2 Π½Π° ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
ΡΠ°Π²Π½Ρ.
U1 = IR1, U2 = IR2.
ΠΠ±ΡΠ΅Π΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ U Π½Π° ΠΎΠ±ΠΎΠΈΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ U1 ΠΈ U2:
U = U1 + U2 = I (R1 + R2) = IR,.
Π³Π΄Π΅ R — ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ. ΠΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ:
R = R1 + R2.
ΠΡΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠΈ ΡΠ°Π²Π½ΠΎ ΡΡΠΌΠΌΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΎΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΠ΅ ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ (ΡΠΈΡ. 1.9.2) Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ U1 ΠΈ U2 Π½Π° ΠΎΠ±ΠΎΠΈΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ:
U1 = U2 = U.
Π‘ΡΠΌΠΌΠ° ΡΠΎΠΊΠΎΠ² I1 + I2, ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ
ΠΏΠΎ ΠΎΠ±ΠΎΠΈΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°ΠΌ, ΡΠ°Π²Π½Π° ΡΠΎΠΊΡ Π² Π½Π΅ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΠΏΠΈ:
I = I1 + I2.
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π² ΡΠΎΡΠΊΠ°Ρ
ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΠΎΠ² (ΡΠ·Π»Ρ A ΠΈ B) Π² ΡΠ΅ΠΏΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π΅ ΠΌΠΎΠ³ΡΡ Π½Π°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°ΡΡΡΡ Π·Π°ΡΡΠ΄Ρ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊ ΡΠ·Π»Ρ A Π·Π° Π²ΡΠ΅ΠΌΡ Πt ΠΏΠΎΠ΄ΡΠ΅ΠΊΠ°Π΅Ρ Π·Π°ΡΡΠ΄ IΠt, Π° ΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡ ΡΠ·Π»Π° Π·Π° ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ Π·Π°ΡΡΠ΄ I1Πt + I2Πt. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, I = I1 + I2.
ΠΠ°ΠΏΠΈΡΡΠ²Π°Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°ΠΊΠΎΠ½Π° ΠΠΌΠ°.
Π³Π΄Π΅ R — ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ Π²ΡΠ΅ΠΉ ΡΠ΅ΠΏΠΈ, ΠΏΠΎΠ»ΡΡΠΈΠΌ.
ΠΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΌ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π²Π΅Π»ΠΈΡΠΈΠ½Π°, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠΈ, ΡΠ°Π²Π½Π° ΡΡΠΌΠΌΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΎΠ±ΡΠ°ΡΠ½ΡΡ
ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
ΠΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ² Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
Π€ΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ»ΡΡΠ°ΡΡ
ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ΅Π·ΠΈΡΡΠΎΡΠΎΠ². ΠΠ° ΡΠΈΡ. 1.9.3 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΠΊΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ ΠΈ ΡΠΊΠ°Π·Π°Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π ΠΈΡΡΠ½ΠΎΠΊ 1.9.3. Π Π°ΡΡΠ΅Ρ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΏΠΈ. Π‘ΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π²ΡΠ΅Ρ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΡΠΊΠ°Π·Π°Π½Ρ Π² ΠΎΠΌΠ°Ρ
(ΠΠΌ).
Π‘Π»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π΄Π°Π»Π΅ΠΊΠΎ Π½Π΅ Π²ΡΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ ΡΠ΅ΠΏΠΈ, ΡΠΎΡΡΠΎΡΡΠΈΠ΅ ΠΈΠ· ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ°ΡΡΡΠΈΡΠ°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΎΡΠΌΡΠ» Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ. ΠΠ° ΡΠΈΡ. 1.9.4 ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΊΠΎΡΠΎΡΡΡ Π½Π΅Π»ΡΠ·Ρ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌ Π²ΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ.
Π ΠΈΡΡΠ½ΠΎΠΊ 1.9.4. ΠΡΠΈΠΌΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΏΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Π½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ².
Π¦Π΅ΠΏΠΈ, ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ Π½Π° ΡΠΈΡ. 1.9.4, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΠΏΠΈ Ρ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠ°Π²ΠΈΠ» ΠΠΈΡΡ
Π³ΠΎΡΠ°.