Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ построСния интСрполяционных Ρ„ΠΎΡ€ΠΌΡƒΠ» для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. Для простоты ограничимся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… z=f (x, Ρƒ). ΠŸΡƒΡΡ‚ΡŒ Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ Π·Π°Π΄Π°Π½Ρ‹ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅ равноотстоящих ΡƒΠ·Π»ΠΎΠ² (xi, yi) (i, j = 0,1,2). Π’Π²Π΅Π΄Π΅ΠΌ обозначСния. ΠŸΡ€ΠΈΠΌΠ΅Ρ€. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z = f (x, y) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (1,0), Ссли извСстны Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ. Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ построСния интСрполяционных Ρ„ΠΎΡ€ΠΌΡƒΠ» для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ…. Для простоты ограничимся Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… z=f (x, Ρƒ). ΠŸΡƒΡΡ‚ΡŒ Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ Π·Π°Π΄Π°Π½Ρ‹ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅ равноотстоящих ΡƒΠ·Π»ΠΎΠ² (xi, yi) (i, j = 0,1,2). Π’Π²Π΅Π΄Π΅ΠΌ обозначСния.

, .

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½, Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Ρƒ ΠΡŒΡŽΡ‚ΠΎΠ½Π° для случая ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ. Π—Π΄Π΅ΡΡŒ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ разности Π΄Π²ΡƒΡ… Π²ΠΈΠ΄ΠΎΠ² — ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡΠΌ Ρ… ΠΈ Ρƒ. Π­Ρ‚ΠΈ частныС разности ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ порядка ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ Ρ‚Π°ΠΊΠΆΠ΅ выраТСния для частных разностСй Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка:

Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ Π²Ρ‚ΠΎΡ€ΠΎΠΉ стСпСни ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅.

Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….
Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….
Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

МоТно Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. ГСомСтричСски это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, (i = 1, 2, 3), Π³Π΄Π΅ zi = f (xi, yi). Из ΠΊΡƒΡ€ΡΠ° аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ извСстно, Ρ‡Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ плоскости, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅.

ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ:

ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ:

(2.58).

(2.58).

Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….
ΠŸΡ€ΠΈΠΌΠ΅Ρ€. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z = f(x,y) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (1,0), Ссли извСстны Π΅Π΅ значСния.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€. Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ z = f (x, y) Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (1,0), Ссли извСстны Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡ.

z1 = f(0,0) = 0, z2 = f (2,4) = -3, z3= f(4, -2) = 1.

Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ интСрполяции (2.58). Вычислим значСния ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ.

Π˜Π½Ρ‚Π΅Ρ€ΠΏΠΎΠ»ΡΡ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π²ΡƒΡ… ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ,.

ΠΈΠ»ΠΈ.

Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ интСрполяции для Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°. ΠŸΡ€ΠΈ Ρ… = 1, Ρƒ =0 ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ z?-0.1.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ