Модель транспорта макромолекул в биологической ткани при циклической деформации
Диссертация
Биологические ткани состоят из клеток и полимерной сети, или внеклеточного матрикса, пространство между элементами которого заполнено жидкостью. Таким образом, основу ткани, то есть внеклеточную среду, составляет полимерный гель. Жидкость в порах геля может перемещаться относительно матрикса. Массообмен между тканью и близкими кровеносными сосудами происходит быстро за счет диффузионного переноса… Читать ещё >
Содержание
- Используемые обозначения
- Введение ' 1 '
- ГЛАВА 1. Роль потоков жидкости как механического стимула в регуляции функции биологических тканей
- 1. 1. Биологическая ткань как гель и вязкоупругая среда
- 1. 1. 1. Структура биологической ткани
- 1. 1. 2. Состав и свойства некоторых биологических гидрогелей и тканей
- 1. 2. Взаимосвязь деформации тканей, потоков внеклеточной жидкости и функционирования тканей
- 1. 2. 1. Течение внеклеточной жидкости в ткани и перенос молекул
- 1. 2. 2. Деформация тканей в физиологических условиях. Характерные частоты нагрузки
- 1. 2. 3. Возникновение знакопеременного потока внеклеточной жидкости при переменной механической нагрузке
- 1. 2. 4. Явления в биологических тканях, обусловленные их циклической деформацией и потоками внеклеточной жидкости
- 1. 2. 5. Изменение концентрации молекул под действием потоков жидкости как механизм чувствительности клеток к потоку
- 1. 1. Биологическая ткань как гель и вязкоупругая среда
- 2. 1. 1. Основные положения теории пороэластичности
- 2. 1. 2. Существующие модели деформации биологических тканей... 39 2.2. Модели транспорта молекул в ткани и геле при циклической деформации
- 3. 1. Формулировка модели
- 3. 1. 1. Качественное описание деформации ткани
- 3. 1. 2. Схема модели
- 3. 1. 3. Постановка краевой задачи
- 3. 1. 4. Эквивалентность схемы неограниченной деформации схеме ограниченной деформации при выводе основного уравнения
- 3. 2. Численное решение
- 3. 2. 1. Аналитическое решение
- 3. 2. 2. Метод решения
- 3. 2. 3. Результат численного решения
- 3. 2. 4. Обсуждение
- 3. 2. 5. Сравнение с другими моделями и экспериментальными данными
- 4. 1. Формулировка модели
- 4. 1. 1. Качественное описание модели
- 4. 1. 2. Постановка краевой задачи массопереноса
- 4. 2. Определение безразмерных параметров
- 4. 2. 1. Переход к безразмерным переменным
- 4. 2. 2. Определение значений безразмерных параметров
- 4. 3. Численное решение
- 4. 3. 1. Решение для молекул, не связывающихся с матриксом
- 4. 3. 2. Решение для молекул, связывающихся с матриксом
- 4. 3. 3. Функция выигрыша
- 4. 4. Верификация модели
- 4. 4. 1. Сравнение предсказаний модели с экспериментальными данными
- 4. 4. 2. Сравнение настоящей модели с другими моделями
- 4. 5. Обсуждение результатов и
- 5. 1. Расчёт транспорта плазмина в фибриновом геле
- 5. 2. Расчёт транспорта фибронектина в коллагеновом геле
- 5. 3. Перспективы и возможные
Список литературы
- Альберте Б., Брэй Д., Льюис Д. Молекулярная биология клетки Т.2. М.: Мир, 1994.
- Богданова А. В., Голомысов И. С. Кинетическое исследование реакции лизиса фибрина плазмином // Тромбоз, гемостаз и реология. 2007. С. 44−51.
- Воробьев А. X. Диффузионные задачи в химической кинетике. Издательство Московского Университета, 2003.
- Голомысов И. С. Экспериментальное моделирование лизиса фиб-ринового сгустка in vitro в присутствии ск2-антиплазмина и а2-макроглобулина // Вестник Московского Университета. 2003. Т. 44, № 1. С. 28−30.
- Гросберг А. Ю., Хохлов А. Р. Статистическая физика полимеров. М.: Наука, 1989.
- Матвеев М. Ю., Боровиков Д. В., Голубых В. Л., Домогатский С. П. Исследование массопереноса в закупоренной артерии кролика in vivo // Бюллетень экспериментальной биологии и медицины. 1998. Т. 125, № 4. С. 388−391.
- Осидак М. С. Механические свойства биокомпозитных материалов на основе коллагена и гидроксиапатита. // Дипломная работа. МГУ им. М. В. Ломоносова. Физический факультет, кафедра биофизики. 2010.
- Самарский А. А. Введение в численные методы. Наука М., 1997.
- Сахаров Д. В., Матвеев М. Ю., Домогатский С. П. Связывание аффинного лиганда с объемной мишенью. Роль дифузионных ограничений. // Биофизика. 1991. № 36 (1). С. 49−54.
- Серов В. В., Шехтер А. Б. Соединительная ткань. М.: Медицина, 1981.
- Фейнман Р., Лейтон Р., Сэндс M. Фейнмановские лекции по физике Т.7. М.: Мир, 1966.
- Aarabi S., Bhatt К. A., Shi Y. et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis // The FASEB Journal. 2007. Vol. 21, no. 12. P. 3250.
- Albro M. В., Chahine N. O., Li R. et al. Dynamic loading of deformable porous media can induce active solute transport // Journal of biomechanics. 2008. Vol. 41, no. 15. Pp. 3152−3157.
- Albro M. В., Li R., Banerjee R. E. et al. Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media // Journal of biomechanics. 2010. Vol. 43, no. 12. Pp. 22 672 273.
- Anand S., Diamond S. L. Computer simulation of systemic circulation and clot lysis dynamics during thrombolytic therapy that accounts for inner clot transport and reaction // Circulation. 1996. Vol. 94, no. 4. P. 763.
- Andrade J. S., Costa U. M., Almeida M. P. et al. Inertial effects on fluid flow through disordered porous media // Physical review letters. 1999. Vol. 82, no. 26. Pp. 5249−5252.
- Armstrong C. G., Lai W. M., Mow V. C. An analysis of the unconfined compression of articular cartilage // Journal of biomechanical engineering. 1984. Vol. 106. P. 165.
- Ateshian G. A. The role of interstitial fluid pressurization in articular cartilage lubrication // Journal of biomechanics. 2009. Vol. 42, no. 9. Pp. 1163−1176.
- Banks H. T., Hu S, Kenz Z. R. A brief review of elasticity and viscoelasticity. CRSC-TR10−08, NC State University, May, 2010, 2010.
- Barnes H. A. A handbook of elementary rheology // University of Wales, Aberystwyth. 2000.
- Bear J., Bachmat Y. Introduction to modeling of transport phenomena in porous media. Springer Netherlands, 1990.
- Biot M. A. General Theory of Three-Dimensional Consolidation // Journal of applied physics. 1941. Vol. 12, no. 2. Pp. 155−164.
- Blinc A., Francis C. W. Transport processes in fibrinolysis and fibrinolytic therapy. // Thrombosis and haemostasis. 1996. Vol. 76, no. 4. P. 481.
- Blunk T., Sieminski A. L., Gooch K. J. et al. Differential effects of growth factors on tissue-engineered cartilage // Tissue engineering. 2002. Vol. 8, no. 1. Pp. 73−84.
- Bonassar L. J., Grodzinsky A. J., Frank E. H. et al. The effect of dynamic compression on the response of articular cartilage to insulinlike growth factor-I // Journal of orthopaedic research. 2001. Vol. 19, no. 1. Pp. 11−17. .
- Buschmann M. D., Gluzband Y. A., Grodzinsky A. J., Hunziker E. B. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture // Journal of cell science. 1995. Vol. 108, no. 4. Pp. 1497−1508.
- Chahine N. O., Albro M. B., Lima E. G. et al. Effect of dynamic loading on the transport of solutes into agarose hydrogels // Biophysical journal. 2009. Vol. 97, no. 4. P. 968.
- Chandran P. L., Barocas V. H. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse //Journal of biomechanical engineering. 2004. Vol. 126. P. 152.
- Chen X., Sarntinoranont M. Biphasic finite element model of solute transport for direct infusion into nervous tissue // Annals of Biomedical Engineering. 2007. Vol. 35, no. 12. Pp. 2145−2158.
- Cowin S. C. Tissue growth and remodeling // Biomedical Engineering. 2004. Vol. 6, no. 1. P. 77.
- Cowin S. C., Doty S. B. Tissue mechanics. Springer Verlag, 2007.
- Crank J. The mathematics of diffusion. Oxford university press, 1983.
- Diamond S. L. Engineering design of optimal strategies for blood clot dissolution // Annual Review of Biomedical Engineering. 1999. Vol. 1, no. 1. Pp. 427−461.
- Diamond S. L., Anand S. Inner clot diffusion and permeation during fibrinolysis // Biophysical journal. 1993. Vol. 65, no. 6. Pp. 26 222 643.
- Donzelli P. S., Spilker R. L. A contact finite element formulation for biological soft hydrated tissues // Computer methods in applied mechanics and engineering. 1998. Vol. 153, no. 1−2. Pp. 63−79.
- Duong H., Wu B., Tawil B. Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen-thrombin compositions and by extrinsic cellular activity // Tissue Engineering Part A. 2009. Vol. 15, no. 7. Pp. 1865— 1876.
- Evans R. C., Quinn T. M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage // Biophysical journal. 2006. Vol. 91, no. 4. Pp. 1541−1547.
- Evans R. C., Quinn T. M. Solute convection in dynamically compressed cartilage // Journal of biomechanics. 2006. Vol. 39, no. 6. Pp. 10 481 055.
- Ferguson S. J., Ito K., Nolte L. P. Fluid flow and convective transport of solutes within the intervertebral disc // Journal of biomechanics. 2004. Vol. 37, no. 2. Pp. 213−221.
- Fleury M. E., Boardman K. C., Swartz M. A. Autologous morphogen gradients by subtle interstitial flow and matrix interactions // Biophysical journal. 2006. Vol. 91, no. 1. Pp. 113−121.
- Francis C. W., Blinc A., Lee S., Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots // Ultrasound in medicine & biology. 1995. Vol. 21, no. 3. Pp. 419−424.
- Fratzl P. Collagen: structure and mechanics. Springer Verlag, 2008.
- Frijns A. J. H. A four-component mixture theory applied to cartilaginous tissues: numerical modelling and experiments. Technische Universiteit Eindhoven, 2000.
- Fritton S. P., Weinbaum S. Fluid and solute transport in bone: flow-induced mechanotransduction // Annual review of fluid mechanics. 2009. Vol. 41. P. 347.
- Garcia A., Szasz N., Trippel S. B. et al. Transport and binding of insulin-like growth factor I through articular cartilage // Archives of biochemistry and biophysics. 2003. Vol. 415, no. 1. Pp. 69−79.
- Gardiner B., Smith D., Pivonka P. et al. Solute transport in cartilage undergoing cyclic deformation // Computer Methods in Biomechanics and Biomedical Engineering. 2007. Vol. 10, no. 4. Pp. 265−278.
- Grodzinsky A. J., Levenston M. E., Jin M., Frank E. H. Cartilage tissue remodeling in response to mechanical forces // Annual Review of Biomedical Engineering. 2000. Vol. 2, no. 1. Pp. 691−713.
- Hillsley M. V., Frangos J. A. Review: Bone tissue engineering: The role of interstitial fluid flow // Biotechnology and bioengineering. 1994. Vol. 43, no. 7. Pp. 573−581.
- Holmes M. H., Lai W. M., Mow V. C. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage // Journal of biomechanical engineering. 1985. Vol. 107. P. 206.
- Huang C. Y., Gu W. Y. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc // Journal of biomechanics. 2008. Vol. 41, no. 6. Pp. 1184−1196.
- Huiskes R., Driel W. D. V., Prendergast P. J., S0balle K. A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation // Journal of materials science: Materials in medicine. 1997. Vol. 8, no. 12. Pp. 785−788.
- Ingham K. C., Brew S. A., Isaacs B. S. Interaction of fibronectin and its gelatin-binding domains with fluorescent-labeled chains of type I collagen. // Journal of Biological Chemistry. 1988. Vol. 263, no. 10. P. 4624.
- Isaksson H., Wilson W., van Donkelaar C. C. et al. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing // Journal of biomechanics. 2006. Vol. 39, no. 8. Pp. 1507−1516.
- Kadler K. E., Holmes D. F., Trotter J. A., Chapman J. A. Collagen fibril formation. // Biochemical Journal. 1996. Vol. 316, no. Pt 1. P. 1.
- Kapellos G. E., Alexiou T. S., Payatakes A. C. Theoretical modeling of fluid flow in cellular biological media: An overview // Mathematical Biosciences. 2010.
- Khaled A. R. A., Vafai K. The role of porous media in modeling flow and heat transfer in biological tissues // International journal of heat and mass transfer. 2003. Vol. 46, no. 26. Pp. 4989−5003.
- Kim Y. J., Sah R. L. Y., Grodzinsky A. J. et al. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli // Archives of biochemistry and biophysics. 1994. Vol. 311, no. 1. Pp. 1−12.
- Knapp D. M., Barocas V. H., Moon A. G. et al. Rheology of reconstituted type I collagen gel in confined compression // Journal of Rheology. 1997. Vol. 41, no. 5. Pp. 971−994.
- Knothe Tate M. L. Mixing mechanisms and net solute transport in bone // Annals of Biomedical Engineering. 2001. Vol. 29, no. 9. Pp. 810−811.
- Knothe Tate M. L. «Whither flows the fluid in bone». An osteocyte’s perspective // Journal of biomechanics. 2003. Vol. 36, no. 10. P. 1409.
- Kojic M., Filipovic N., Stojanovic B., Kojic N. Computer modeling in bioengineering-theoretical background, examples and software //J Wiley and Sons. 2008. Vol. 195. Pp.'121−146.
- Kojic N., Kojic M., Tschumperlin D. J. Computational modeling of extracellular mechanotransduction // Biophysical journal. 2006. Vol. 90, no. 11. Pp. 4261−4270.
- Kwan M. K., Lai M. W., Van Mow C. Fundamentals of fluid transport through cartilage in compression // Annals of Biomedical Engineering. 1984. Vol. 12, no. 6. Pp. 537−558.
- Lacroix D., Prendergast P. J., Li G., Marsh D. Biomechanical model to simulate tissue differentiation and bone regeneration: application tofracture healing // Medical and Biological Engineering and Computing. 2002. Vol. 40, no. 1. Pp. 14−21.
- Larson R. G. The structure and rheology of complex fluids. 1999. Oxford University Press.
- Lee C., Grad S., Wimmer M., Alini M. The influence of mechanical stimuli on articular cartilage tissue engineering // Topics in Tissue Engineering. N. Ashammakhi and R. L. Reis. 2005. Vol. 2.
- Lee K. Y., Peters M. C., Anderson K. W., Mooney D. J. Controlled growth factor release from synthetic extracellular matrices // Nature. 2000. Vol. 408, no. 6815. Pp. 998−1000.
- Levick J. R. Flow through interstitium and other fibrous matrices // Experimental Physiology. 1987. Vol. 72, no. 4. P. 409.
- Liu Y., Kerdok A. E., Howe R. D. A nonlinear finite element model of soft tissue indentation // Medical Simulation. 2004. Pp. 67−76.
- Mansour J. M. Biomechanics of cartilage // Kinesiology: the mechanics and pathomechanics of human movement. Lippincott Williams and Wilkins, Philadelphia, 2003. Pp. 66−79.
- Maroudas A. Transport of solutes through cartilage: permeability to large molecules. // Journal of Anatomy. 1976. Vol. 122, no. Pt 2. P. 335.
- Matveyev M. Y., Domogatsky S. P. Penetration of macromolecules into contracted blood clot. // Biophysical journal. 1992. Vol. 63, no. 3. P. 862.
- Mauck R. L., Nicoll S. B., Seyhan S. L. et al. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering// Tissue Engineering. 2003. Vol. 9, no. 4. Pp. 597−611.
- Mosher D. F. Physiology of fibronectin // Annual review of medicine. 1984. Vol. 35, no. 1. Pp. 561−575.
- Mow V. C., Holmes M. H., Michael Lai W. Fluid transport and mechanical properties of articular cartilage: a review // Journal of biomechanics. 1984. Vol. 17, no. 5. Pp. 377−394.
- Mow V. C., Kuei S. C., Lai W. M., Armstrong C. G. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments // Journal of Biomechanical Engineering. 1980. Vol. 102. Pp. 73−83.
- Mow V. C., Wang C. C., Hung C. T. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage // Osteoarthritis and Cartilage. 1999. Vol. 7, no. 1. Pp. 41−58.
- Nagel T., Kelly D. J. Mechano-regulation of mesenchymal stem cell differentiation and. collagen organisation during skeletal tissue repair // Biomechanics and modeling in mechanobiology. 2010. Vol. 9, no. 3. Pp. 359−372.
- Netti P. A., Berk D. A., Swartz M. A. et al. Role of extracellular matrix assembly in interstitial transport in solid tumors // Cancer research. 2000. Vol. 60, no. 9. P. 2497.
- Netti P. A., Travascio F., Jain R. K. Coupled macromolecular transport and gel mechanics: Poroviscoelastic approach // AIChE Journal. 2003. Vol. 49, no. 6. Pp. 1580−1596.
- Noailly J., Van Oosterwyck H., Wilson W. et al. A poroviscoelastic description of fibrin gels // Journal of biomechanics. 2008. Vol. 41, no. 15. Pp. 3265−3269.
- Ogston A. G., Preston B. N., Wells J. D. On the transport of compact particles through solutions of chain-polymers // Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1973. Vol. 333, no. 1594. P. 297.
- Ogston A. G., Stanier J. E. The physiological function of hyaluronic acid in synovial fluid- viscous, elastic and lubricant properties // The Journal of Physiology. 1953. Vol. 119, no. 2−3. P. 244.
- O’Hara B. P., Urban J. P., Maroudas A. Influence of cyclic loading on the nutrition of articular cartilage. // Annals of the rheumatic diseases. 1990. Vol. 49, no. 7. P. 536.
- Op Den Buijs J., Ritman E. L., Dragomir-Daescu D. Validation of a Fluid-Structure Interaction Model of Solute Transport in Pores of Cyclically Deformed Tissue Scaffolds // Tissue Engineering Part C: Methods. 2010. P. 962.
- Park S., Krishnan R., Nicoll S. B., Ateshian G. A. Cartilage interstitial fluid load support in unconfined compression // Journal of biomechanics. 2003. Vol. 36, no. 12. Pp. 1785−1796.
- Pedersen J. A., Swartz M. A. Mechanobiology in the third dimension // Annals of biomedical engineering. 2005. Vol. 33, no. 11. Pp. 1469−1490.
- Peppas N. A., Huang Y., Torres-Lugo M. et al. Physicochemical foundations and structural design of hydrogels in medicine and biology // Annual Review of Biomedical Engineering. 2000. Vol. 2, no. 1. Pp. 9−29.
- Phillips R. J. A hydrodynamic model for hindered diffusion of proteins and micelles in hydrogels. // Biophysical Journal. 2000. Vol. 79, no. 6. P. 3350.
- Pluen A., Netti P. A., Jain R. K., Berk D.' A. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations//Biophysical journal. 1999. Vol. 77, no. 1. Pp. 542−552.
- Prendergast P. J. Mechanics applied to skeletal ontogeny and phylogeny // Meccanica. 2002. Vol. 37, no. 4. Pp. 317−334.
- Prendergast P. J., Checa S., Lacroix D. Computational models of tissue differentiation // Computational modeling in biomechanics. 2010. Pp. 353−372.
- Prendergast P. J., Huiskes R., S0balle K. Biophysical stimuli on cells during tissue differentiation at implant interfaces* 1 // Journal of Biomechanics. 1997. Vol. 30, no. 6. Pp. 539−548.
- Quinn T. M., Morel V., Meister J. J. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. // Journal of biomechanics. 2001. Vol. 34, no. 11. P. 1463.
- Ramanujan S., Pluen A., McKee T. D. et al. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium // Biophysical journal. 2002. Vol. 83, no. 3. Pp. 1650−1660.
- Randolph G. J., Angeli V., Swartz M. A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels // Nature Reviews Immunology. 2005. Vol. 5, no. 8. Pp. 617−628.
- Ratner B. D., Bryant S. J. Biomaterials: where we have been and where we are going. Annual Reviews, 2004.
- Roberts W. W., Kramer O., Rosser R. W. et al. Rheology of fibrin clots. I.: Dynamic viscoelastic properties and fluid permeation // Biophysical chemistry. 1974. Vol. 1, no. 3. Pp. 152−160.
- Rutkowski J. M., Swartz M. A. A driving force for change: interstitial flow as a morphoregulator // Trends in cell biology. 2007. Vol. 17, no. 1. Pp. 44−50.
- Ryan E. A., Mockros L. F., Weisel J. W., Lorand L. Structural origins of fibrin clot rheology // Biophysical journal. 1999. Vol. 77, no. 5. Pp. 2813−2826.
- Sah R. L. Y., Kim Y. J., Doong J. Y. H. et al. Biosynthetic response of cartilage explants to dynamic compression // Journal of orthopaedic research. 1989. Vol. 7, no. 5. Pp. 619−636.
- Sakharov D. V., Nagelkerke J. F., Rijken D. C. Rearrangements of the fibrin network and spatial distribution of fibrinolytic components during plasma clot lysis // Journal of Biological Chemistry. 1996. Vol. 271, no. 4. P. 2133.
- Sakharov D. V., Rijken D. C. Superficial accumulation of plasminogen during plasma clot lysis // Circulation. 1995. Vol. 92, no. 7. P. 1883.
- Schneck D. J., Bronzino J. D. Biomechanics: principles and applications. CRC Press LLC, 2003.
- Sengers B. G., Oomens C. W. J., Baaijens F. P. T. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering // Journal of biomechanical engineering. 2004. Vol. 126. P. 82.
- Setton L. A., Zhu W., Mow V. C. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior // Journal of biomechanics. 1993. Vol. 26, no. 4−5. Pp. 581−592.
- Shields J. D., Fleury M. E., Yong C. et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling // Cancer Cell. 2007. Vol. 11, no. 6. Pp. 526−538.
- Soltz M. A., Ateshian G. A. A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage // Journal of biomechanical engineering. 2000. Vol. 122. P. 576.
- Soltz M. A., Ateshian G. A. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage // Annals of Biomedical Engineering. 2000. Vol. 28, no. 2. Pp. 150−159.
- Suh J. K., Li Z., Woo S. L. Y. Dynamic behavior of a biphasic cartilage model under cyclic compressive loading // Journal of biomechanics. 1995. Vol. 28, no. 4. Pp. 357−364.
- Swartz M. A., Fleury M. E. Interstitial flow and its effects in soft tissues // Biomedical Engineering. 2007. Vol. 9, no. 1. P. 229.
- Swartz M. A., Kaipainen A., Netti P. A. et al. Mechanics of interstitial-lymphatic fluid transport: theoretical foundation and experimental validation // Journal of biomechanics. 1999. Vol. 32, no. 12. Pp. 12 971 307.
- Swartz M. A., Tschumperlin D. J., Kamm R. D., Drazen J. M. Mechanical stress is communicated between different cell types to elicit matrix remodeling // Science’s STKE. 2001. Vol. 98, no. 11. P. 6180.
- Tschumperlin D. J., Dai G., Maly I. V. et al. Mechanotransduction through growth-factor shedding into the extracellular space // Nature. 2004. Vol. 429, no. 6987. Pp. 83−86.
- Urciuolo F., Imparato G., Netti P. A. Effect of dynamic loading on solute transport in soft gels implication for drug delivery // AIChE Journal. 2008. Vol. 54, no. 3. Pp. 824−834.
- Vogel V., Sheetz M. Local force and geometry sensing regulate cell functions // Nature Reviews Molecular Cell Biology. 2006. Vol. 7, no. 4. Pp. 265−275.
- Waigh T. A. Applied biophysics: a molecular approach for physical scientists. Wiley-Interscience, 2007.
- Wallace D. G., Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering // Advanced drug delivery reviews. 2003. Vol. 55, no. 12. Pp. 1631−1649.
- Wang L., Cowin S. C., Weinbaum S., Fritton S. P. Modeling Tracer Transport in an Osteon under Cyclic Loading // Annals of Biomedical Engineering. 2000. Vol. 28. Pp. 1200−1209. 10.1114/1.1 317 531.
- Wang L., Cowin S. C., Weinbaum S., Fritton S. P. In response to «Mixing mechanisms and net solute transport in bone» by M. L. Knothe Tate // Annals of Biomedical Engineering. 2001. Vol. 29, no. 9. Pp. 812−816.
- Weisel J. Structure of fibrin: impact on clot stability // Journal of Thrombosis and Haemostasis. 2007. Vol. 5. Pp. 116−124.
- Weisel J. W. The mechanical properties of fibrin for basic scientists and clinicians // Biophysical chemistry. 2004. Vol. 112, no. 2−3. Pp. 267 276.
- Williams R. M., Zipfel W. R., Tinsley M. L., Farnum C. E. Solute transport in growth plate cartilage: in vitro and in vivo // Biophysical journal. 2007. Vol. 93, no. 3. Pp. 1039−1050.
- Wilson W., Van Donkelaar C. C., Van Rietbergen R., Huiskes R. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage // Medical engineering & physics. 2005. Vol. 27, no. 10. Pp. 810−826.
- Yang Z., Smolinski P. Dynamic finite element modeling of poroviscoelastic soft tissue // Computer Methods in Biomechanics and Biomedical Engineering. 2006. Vol. 9, no. 1. Pp. 7−16.
- Yao H., Gu W. Y. Physical signals and solute transport in cartilage under dynamic unconfined compression: finite element analysis // Annals of Biomedical Engineering. 2004. Vol. 32, no. 3. P. 380.
- Yao H., Gu W. Y. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis // Biorheology. 2006. Vol. 43, no. 3. Pp. 323−335.
- Yao H., Gu W. Y. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach // Biomechanics and modeling in mechanobiology. 2007. Vol. 6, no. 1. Pp. 63−72.
- Zhang L., Gardiner B. S., Smith D. W. et al. The effect of cyclic deformation and solute binding on solute transport in cartilage // Archives of biochemistry and biophysics. 2007. Vol. 457, no. 1. Pp. 4756.
- Zhang L., Szeri A. Z. Transport of neutral solute in articular cartilage: effects of loading and particle size // Proceedings of the Royal Society A. 2005. Vol. 461, no. 2059. P. 2021.
- Zhang L., Szeri A. Z. Transportation of neutral solute in deformable, anisotropic, soft tissue // Computers & Mathematics with Applications. 2007. Vol. 53, no. 2. Pp. 232−243.
- Zhang L., Szeri A. Z. Transport of neutral solute in articular cartilage: effect of microstructure anisotropy. // Journal of biomechanics. 2008. Vol. 41, no. 2. P. 430.1. Благодарности