Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. 
ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π­Ρ‚ΠΎ комплСксноС число ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Π³Π΄Π΅, А ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅Ρ‚ся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3 Π½ΠΈΠΆΠ΅), Π° Ρ† — ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (4), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ (2), Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π•Π³ΠΎ вСщСствСнная Ρ‡Π°ΡΡ‚ΡŒ, являвшаяся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ уравнСния (1) Ρ€Π°Π²Π½Π°: АвтоколСбаниями Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ колСбания, энСргия ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… пСриодичСски пополняСтся Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ воздСйствия самой систСмы Π·Π° ΡΡ‡Π΅Ρ‚ источника энСргии, находящСгося… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

РСзонанс Π’ Ρ†Π΅Π»ΠΎΠΌ рядС случаСв Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ создания систСм, ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‰ΠΈΡ… Π½Π΅Π·Π°Ρ‚ΡƒΡ…Π°ΡŽΡ‰ΠΈΠ΅ колСбания. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π½Π΅Π·Π°Ρ‚ΡƒΡ…Π°ΡŽΡ‰ΠΈΠ΅ колСбания Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ ΠΌΠΎΠΆΠ½ΠΎ, Ссли ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΡ‚Π΅Ρ€ΠΈ энСргии, воздСйствуя Π½Π° ΡΠΈΡΡ‚Π΅ΠΌΡƒ пСриодичСски ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΉΡΡ силой.

ΠŸΡƒΡΡ‚ΡŒ Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ для уравнСния двиТСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‰Π΅ΠΉ гармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ дСйствиСм Π²Ρ‹Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ силы.

По Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ ΠΡŒΡŽΡ‚ΠΎΠ½Π°:

(1).

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

— Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ.

Π­Ρ‚ΠΎ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ являСтся Π»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ.

Π•Π³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ суммС ΠΎΠ±Ρ‰Π΅Π³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния ΠΈ Ρ‡Π°ΡΡ‚Π½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния:

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

НайдСм частноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ уравнСния. Для этого ΠΏΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (1) Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅:

(2).

ЧастноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этого уравнСния Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΊΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅:

Π’ΠΎΠ³Π΄Π° ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π² (2):

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Ρ‚.ΠΊ. выполняСтся для любого t, Ρ‚ΠΎ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒΡΡ равСнство Π³ = Ρ‰, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,.

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π­Ρ‚ΠΎ комплСксноС число ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Π³Π΄Π΅ А опрСдСляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3 Π½ΠΈΠΆΠ΅), Π° Ρ† — ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (4), ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ (2), Π² ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ Π•Π³ΠΎ вСщСствСнная Ρ‡Π°ΡΡ‚ΡŒ, являвшаяся Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ уравнСния (1) Ρ€Π°Π²Π½Π°:

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π“Π΄Π΅.

(3).

(3).

(4).

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π‘Π»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π₯ΠΎ.ΠΎ. ΠΈΠ³Ρ€Π°Π΅Ρ‚ ΡΡƒΡ‰Π΅ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ стадии ΠΏΡ€ΠΈ установлСнии ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π° Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π½Π΅ Π΄ΠΎΡΡ‚ΠΈΠ³Π½Π΅Ρ‚ значСния опрСдСляСмого равСнством (3). Π’ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡΡ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания происходят с Ρ‡Π°ΡΡ‚ΠΎΡ‚ΠΎΠΉ Ρ‰ ΠΈ ΡΠ²Π»ΡΡŽΡ‚ся гармоничСскими. Амплитуда (3) ΠΈ Ρ„Π°Π·Π° (4) Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ зависят ΠΎΡ‚ Ρ‡Π°ΡΡ‚ΠΎΡ‚Ρ‹ Π²Ρ‹Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ силы. ΠŸΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ частотС Π²Ρ‹Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ силы Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π½ΡƒΡ‚ΡŒ ΠΎΡ‡Π΅Π½ΡŒ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π Π΅Π·ΠΊΠΎΠ΅ возрастаниС Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΏΡ€ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ частоты Π²Ρ‹Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ силы ΠΊ ΡΠΎΠ±ΡΡ‚Π²Π΅Π½Π½ΠΎΠΉ частотС мСханичСской систСмы, называСтся рСзонансом.

Частота Ρ‰ Π²Ρ‹Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ силы, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ рСзонанс, называСтся рСзонансной. Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ‰Ρ€Π΅Π·, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ условиС максимума Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹. Для этого Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ условиС ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° знамСнатСля Π² (3) (Ρ‚.Π΅. ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ (3) Π½Π° ΡΠΊΡΡ‚Ρ€Π΅ΠΌΡƒΠΌ).

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.
Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‰Π΅ΠΉΡΡ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚ Ρ‡Π°ΡΡ‚ΠΎΡ‚Ρ‹ Π²Ρ‹Π½ΡƒΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ силы называСтся рСзонансной ΠΊΡ€ΠΈΠ²ΠΎΠΉ. РСзонансная кривая Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚Π΅ΠΌ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ мСньшС коэффициСнт затухания Π² ΠΈ Ρ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π², максимум рСзонансных ΠΊΡ€ΠΈΠ²Ρ‹Ρ… ΡΠΌΠ΅ΡˆΠ°Π΅Ρ‚ΡΡ Π²ΠΏΡ€Π°Π²ΠΎ. Если Π² = 0, Ρ‚ΠΎ Ρ‰Ρ€Π΅Π· = Ρ‰0.

ΠŸΡ€ΠΈ Ρ‰>0 всС ΠΊΡ€ΠΈΠ²Ρ‹Π΅ приходят ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ — статичСскоС ΠΎΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅.

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½Π½Ρ‹Π΅ колСбания. ГармоничСскоС ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΈΠΉ рСзонанс Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π² Ρ‚ΠΎΠΌ случаС, ΠΊΠΎΠ³Π΄Π° пСриодичСскоС ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² систСма ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π΅Π·ΠΊΠΎΠΌΡƒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Ρ‹ ΠΊΠΎΠ»Π΅Π±Π»ΡŽΡ‰Π΅ΠΉΡΡ систСмы. НапримСр, ΠΊΠ°Π±ΠΈΠ½Ρ‹, Π΄Π΅Π»Π°ΡŽΡ‰ΠΈΠ΅ «ΡΠΎΠ»Π½Ρ‹ΡˆΠΊΠΎ» Π·Π° ΡΡ‡Π΅Ρ‚ измСнСния полоТСния Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти систСма.(Π’ΠΎ ΠΆΠ΅ Π² «Π»ΠΎΠ΄ΠΎΡ‡ΠΊΠ°Ρ…» .).

АвтоколСбаниями Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊΠΈΠ΅ колСбания, энСргия ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… пСриодичСски пополняСтся Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ воздСйствия самой систСмы Π·Π° ΡΡ‡Π΅Ρ‚ источника энСргии, находящСгося Π² ΡΡ‚ΠΎΠΉ ΠΆΠ΅ систСмС.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ