Бакалавр
Дипломные и курсовые на заказ

Уравнения обратных задач электромагнитных геофизических полей и алгоритмы их решения

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В настоящее время в геофизической разведке достаточно эффективно используются электрические и магнитные поля токов растекания, т. е. токов, создаваемых в земле с помощью заземленных электродов. Теория интерпретации этих данных активно разрабатывается, но проводимые исследования посвящены, как правило, решению прямых задач. Обратная задача в общем случае сводится к операторному уравнению 1 -го… Читать ещё >

Содержание

  • введение з
  • глава 1. 0 решении трехмерной обратной задачи электроразведки постоянным током
    • 1. 1. Введение
    • 1. 2. Постановка задачи
    • 1. 3. Алгоритм решения явного операторного уравнения ТОЗ 14 метода заряда
  • глава 2. о решении трехмерной обратной задачи для уравнения гел ьмгольца
    • 2. 1. Введение
    • 2. 2. Постановка задачи
    • 2. 3. Явные операторные уравнения ТОЗ
    • 2. 4. Алгоритм решения уравнения ТОЗ в классе звездных тел
    • 2. 5. Численные примеры
  • глава 3. алгоритм и примеры решения обратной задачи для электромагнитного поля
    • 3. 1. Введение
    • 3. 2. Постановка задачи
    • 3. 3. Явные уравнения ТОЗ и алгоритм решения
    • 3. 4. Численные примеры 34 заключение
  • литература

Электромагнитные методы широко используются для изучения глубинного строения Земли, поисков месторождений полезных ископаемых, решения экологических задач. Завершающим этапом в исследованиях всегда является интерпретация экспериментальных данных. Получить как можно более точные и подробные результаты интерпретации — задача геофизика. Для этой цели требуется разработка математической теории интерпретации данных, полученных при измерении геофизических полей, и построение эффективных алгоритмов, основанных на этой теории.

Исследования в области решения задач для электромагнитных полей (прямых и обратных) проводились М. Н. Бердичевским [4, 5], JI.JI. Ваньяном [9], В. П. Губатенко [116], В. И. Дмитриевым [18−24],. М. С. Ждановым [4, 5, 7, 19, 28−38, 210], П. С. Мартышко [64−98, 193−203], Б. С. Световым [114−116], В. Н. Страховым [17, 118−133] и другими учеными. Известны работы новосибирских ученых под руководством М. И. Эпова [189] по интерпретации данных ВИКИЗ. Можно отметить работы иностранных ученых, таких как G.W. Hohmann [192, 207], Р.Е. Wannamaker [207], P. Weidelt [208], Art Raiche [209]. Заметим, что большинство работ в этой области посвящено решению прямых задач, а обратные задачи, как правило, решались методом многократного решения прямой задачи. Этот метод требовал большого количества машинного времени.

В Институте геофизики УрО РАН в области исследования электромагнитных полей, в частности, получены следующие результаты.

В. В. Кормильцевым [52−54] рассмотрен учет вызванной поляризации в уравнениях электродинамики. Предложены формулы для вычисления электрического и магнитного полей ВП для объектов сложной формы. Рассмотрены физико-теоретические основы метода ВП на переменном и импульсном токе, учет ВП в индуктивных методах электроразведки.

О.А. Хачай [15, 147−159] на основе интегральных представлений электромагнитных полей в слоистой среде с неоднородным включением, полученных Е. В. Захаровым и И. В. Ильиным [41], выведены уравнения теоретической обратной задачи для электромагнитных геофизических полей.

Г. М. Воскобойниковым [12−16] и А. Ф. Шестаковым [15, 16, 26, 85, 178 187] предложен трехмерный вариант метода особых точек (МОТ) для интерпретации переменного электромагнитного поля, возбуждаемого в гармоническом режиме. Сконструированы оригинальные гасящие функции конкретного вида, допускающего эффективное их использование при определении параметров особых точек гармонических электромагнитных полей- разработаны устойчивые алгоритмы и программы численного решения задачи, реализующие МОТ. В дальнейшем А. Ф. Шестаковым [171−177] разработаны также теория и математический аппарат определения эффективных источников аномалий двухмерного электромагнитного поля, возбуждаемого в гармоническом режиме в однородной и слоистой средах, вмещающих геоэлектрическую неоднородность. На их основе предложен и обоснован двухмерный вариант МОТ для интерпретации монохроматического электромагнитного поля. Сконструированы гасящие функции для однородной и слоистой вмещающей среды, допускающие эффективное их использование при определении параметров особых точек ЭМ поля в двухмерной постановке- разработаны устойчивые алгоритмы численного решения задачи и реализующие их программы.

Под руководством А. Г. Дьяконовой [25−27] (в том числе и с использованием методики А.Ф. Шестакова) были проведены обширные магнитотеллурические исследования на И региональных профилях, общей протяженностью свыше 4000 км. По результатам этих исследований были составлены площадные схемы распределения электрических параметров на разных глубинах, проведена количественная интерпретация магнитотеллурических данных и построены геоэлектрические модели строения земной коры и верхней мантии по ряду протяженных субширотных геотраверсов, дающих представление о расслоенности геоэлектрических параметров до глубин в сотни километров.

Цель работы — получение интегральных уравнений обратной задачи электромагнитных геофизических полей и разработка эффективных алгоритмов решения обратной задачи электромагнитных геофизических полей.

В Институте геофизики УрО РАН под руководством А. В. Цирульского была разработана теория и алгоритмы двухэтапной интерпретации гравитационных и магнитных полей (в двумерном варианте) [14, 101, 102, 161 167].

Сущность двухэтапных методов состоит в следующем:

1) наблюденные данные аппроксимируются полями сингулярных источников (идея В. Н. Страхова и А.В. Цирульского) —

2) решается теоретическая обратная задача (ТОЗ) — по заданному всюду полю сингулярных источников строится эквивалентное семейство решений операторного уравнения 1-го рода с явно заданным оператором.

Таким образом, на первом этапе происходит разделение полей, и обратная задача решается для каждой группы источников, трактуемых как один аномальный объект, отдельно. Подчеркнем, что второй этап был реализован с использованием уравнения ТОЗ В. К. Иванова [43−51]. Эти методы успешно используются для интерпретации двумерных потенциальных полей.

Применим ли данный подход для трехмерной обратной задачи электроразведки? Следует отметить, что разработка алгоритмов численного решения ТОЗ для электромагнитного поля сопряжена со значительно большими (по сравнению с потенциальными полями) трудностями, поскольку приходится находить решение операторного уравнения I рода, при этом уравнения имеют векторный характер.

При решении обратной задачи электроразведки возникают дополнительные трудности: нелинейная обратная задача электроразведки в общем случае сводится к уравнению с неявно заданным оператором. Для теоретической обратной задачи П. С. Мартышко в работах [67, 69] были получены явные уравнения. Позже нами были выведены явные уравнения для теоретической обратной задачи электроразведки в случае, когда рассматривается полупространство с произвольной границей раздела земля-воздух [90].

Поле, произвольно меняющееся во времени, в силу линейности уравнений Максвелла, может быть представлено в виде суммы гармонических полей, зависимость которых от времени выражена с помощью множителя ехр (-Ш). Далее в работе рассматривались уравнения для гармонических электромагнитных полей — уравнения Гельмгольца. При численном решении этих уравнений использовался алгоритм, разработанный в [67] для класса звездных тел.

Вследствие того, что еще не определен полный класс функций для подбора элементов поля, позволяющий установить разрешимость обратной задачи в конечном виде, проблема реализации первого этапа в трехмерном варианте до сих пор остается открытой. Но исследование эквивалентных семейств решений представляет собой самостоятельный научный и практический интерес, позволяющий создавать и анализировать геологически содержательные модели аномалиеобразующих объектов, эквивалентных по полю различным классам сингулярных источников.

Отдельный интерес представляет задача учета границы раздела земля-воздух. В статье Е. В. Захарова и И. В. Ильина [41] приведены интегральные представления электромагнитных полей в неоднородной слоистой среде. Авторы работы смогли избавиться от интеграла по поверхности раздела земля-воздух за счет введения тензорных функций Грина. Но при этом значительно усложнилась подынтегральная функция.

В полученных нами уравнениях учет границы земля-воздух задается интегралом по границе. Как показали решения для модельных примеров, вычисление интеграла по бесконечной границе раздела земля-воздух можно с большой степенью точности заменить интегралом по сравнительно небольшому прямоугольнику, так как электромагнитное поле быстро затухает с расстоянием. К тому же значение этого интеграла для каждой точки нашего носителя информации (множества точек, в которых задано поле) не зависит от изменения границы аномального включения, и поэтому он рассчитывается только один раз в начале работы алгоритма, после чего в минимизационный функционал подставляются заранее вычисленные значения интеграла.

Научная новизна проведенных исследований состоит в следующем:

1. Выведены уравнения (с явно заданным оператором) теоретической обратной задачи электромагнитных полей, удовлетворяющих уравнению Гельмгольца (с учетом границы раздела земля-воздух).

2. Впервые построены примеры решений трехмерной теоретической обратной задачи электромагнитных полей.

3. Построены примеры, иллюстрирующие зависимость решения теоретической обратной задачи от выбора носителя информации.

4. Построены примеры, иллюстрирующие зависимость решения теоретической обратной задачи от рельефа границы раздела земля-воздух.

Защищаемые положения:

1. Получены новые уравнения теоретической обратной задачи (с явно заданным оператором) электромагнитного поля с учетом границы раздела земля-воздух для модели тела с постоянными значениями сг и /л в однородном полупространстве.

2. На основе разработанных алгоритмов решения теоретических обратных задач электромагнитных полей показано, что результаты интерпретации электромагнитных данных существенно зависят от взаимного расположения изучаемого объема внутри Земли и множества точек, в которых задано (измерено) электромагнитное поле.

Практическая значимость работы

Создан пакет программ для решения теоретической обратной задачи трехмерных электромагнитных полей. Решение ТОЗ представляет интерес не только как реализация одного из этапов методов интерпретации, но и дает возможность строить геологически содержательные эквиваленты различным классам сингулярных источников.

Личный вклад автора состоит: в получении уравнений теоретической обратной задачи для скалярного уравнения Гельмгольца и векторного уравнения Гельмгольца с учетом границы раздела земля-воздух-

в разработке и программной реализации алгоритмов решения обратных задач для метода заряда, скалярного уравнения Гельмгольца и векторного уравнения Гельмгольца-

в построении примеров решений трехмерной теоретической обратной задачи для метода заряда, скалярного уравнения Гельмгольца и векторного уравнения Гельмгольца.

Апробация работы

Основные положения диссертационной работы докладывались и обсуждались на научно-практических конференциях: Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Воронеж, 1996 г), Российской конференции «Теория и практика интерпретации данных электромагнитных геофизических методов (Екатеринбург, 1996 г), Международной конференции «Электромагнитные исследования с контролируемыми источниками» (Санкт-Петербург, 1996), General Assembly of the EGS (Vienna — Austria, 1997), 59th EAGE Conference & Technical exhibition (Geneva — Switzerland, 1997), 8th Scientific Assembly of IAGA (Uppsala — Sweden, 1997), Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Москва, 1997 г), Всероссийской научной конференции, посвященной памяти В. К. Иванова (Екатеринбург, 1998 г), Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Ухта, 1998 г), «Electromagnetic Induction in the Earth» (Romania, 1998), Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Екатеринбург, 1999 г), 61st EAGE Conference & Technical exhibition (Helsinki — Finland, 1999), Second International Symposium on 3D Electromagnetics (Salt Lake City — USA, 1999), Международной научно-практической конференции молодых ученых и специалистов «Геофизика — 99» (Санкт-Петербург, 1999 г), Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Москва, 2000 г), Уральской молодежной научной школе по геофизике (Екатеринбург, 2000 г), 15th Workshop on Electromagnetic Induction in the Earth (Cabo Frio — Brazil, 2000), Международной конференции «Проблемы геокосмоса» (Санкт-Петербург, 2000 г), Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Киев, 2001 г), Всероссийской научной конференции «Алгоритмический анализ неустойчивых задач» (Екатеринбург, 2001 г), Международной конференции молодых ученых, специалистов и студентов «Геофизика-2001» (Новосибирск, 2001 г), Второй Уральской молодежной научной школе по геофизике (Пермь, 2001 г), Международной конференции «Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей» (Екатеринбург, 2002 г), Третьей Уральской молодежной научной школе по геофизике (Екатеринбург, 2002 г), Четвертой Уральской молодежной научной школе по геофизике (Пермь, 2003 г), V Международной научно-практической геолого-геофизической конкурсе-конференции молодых ученых и специалистов «ГЕОФИЗИКА-2005» (Санкт-Петербург, 2005 г), XI Всероссийской школе-семинаре «Современные проблемы математического моделирования» (Абрау-Дюрсо, 2005 г).

Основное содержание изложено в 40 работах (из них 10 на английском языке), 9 выполнено лично автором.

Исследования по теме диссертации выполнены автором за период с 1994 по 2005 год в лаборатории математической геофизики Института геофизики УрО РАН под руководством заведующего лабораторией член-корреспондента РАН П. С. Мартышко. Соискатель выражает искреннюю признательность своему научному руководителю за постановку задачи, многочисленные научные консультации и ценные замечания в процессе работы над диссертацией, за корректное руководство и помощь в анализе материала.

Автор признателен своим коллегам — сотрудникам лаборатории математической геофизики И. Л. Пруткину, Н. В. Федоровой, А. Ф. Шестакову, К. В. Мусыгину, О. А. Касимовой, с которыми обсуждались результаты работы. Объем и структура работы

Диссертация состоит из введения, трех глав и заключения, содержит 71 страницу текста и 9 рисунков. Библиография содержит 210 наименований.

Глава

О РЕШЕНИИ ТРЕХМЕРНОЙ ОБРАТНОЙ ЗАДАЧИ ЭЛЕКТРОРАЗВЕДКИ ПОСТОЯННЫМ ТОКОМ

Уравнения обратных задач электромагнитных геофизических полей и алгоритмы их решения (реферат, курсовая, диплом, контрольная)

В настоящее время в геофизической разведке достаточно эффективно используются электрические и магнитные поля токов растекания, т. е. токов, создаваемых в земле с помощью заземленных электродов. Теория интерпретации этих данных активно разрабатывается, но проводимые исследования посвящены, как правило, решению прямых задач. Обратная задача в общем случае сводится к операторному уравнению 1 -го рода с неявно заданным оператором. Вместе с тем, для случая теоретической обратной задачи (ТОЗ), когда по заданному в явном виде аномальному электрическому потенциалу, требуется найти семейство тел с различной постоянной проводимостью, создающих в поле некоторого источника этот потенциал, П. С. Мартышко были получены явные операторные уравнения [67−69]. Отметим, что решение ТОЗ представляет интерес не только как реализация одного из этапов методов интерпретации [101, 166, 167], но и позволяет строить геологически содержательные эквиваленты различным классам сингулярных источников.

Цель настоящей главы — построить на основе явных операторных уравнений примеры решения ТОЗ метода заряда.

1.2 Постановка задачи.

Пусть D — область из евклидова пространства R3 проводимости <т2 -находится в среде с проводимостью а, (сг,<72 — const), W — электрический потенциал сторонних источников, помещенных в DV, и V2 — внешний и внутренний потенциалы проводящего включения D. Как известно, потенциалы VX, V2 и W — гармонические функции, т. е. кроме того, на границе D — поверхности S — выполняются следующие соотношения:

Решение прямой задачи метода заряда сводится к нахождению потенциалов V, и V2 из условий (1.1)-(1.3).

Обратная задача может быть сформулирована следующим образом: по заданной функции V, (V2), удовлетворяющей на границе искомой области условиям (1.1)-(1.3), найти эту область.

AV{ =0, AW = 0 в D', AV2 =0 в D+,.

1.1).

1.2) dV2 dVx dW.

1.3).

Основные результаты, полученные в работе, состоят в следующем:

1. Выведены уравнения теоретической обратной задачи для скалярного уравнения Гельмгольца и векторного уравнения Гельмгольца с учетом границы раздела земля-воздух, позволяющие построить эффективные алгоритмы интерпретации электромагнитных данных.

2. Разработаны и программно реализованы алгоритмы решения теоретических обратных задач для метода заряда, скалярного уравнения Гельмгольца и векторного уравнения Гельмгольца.

3. Создан комплекс программ для решения теоретической обратной задачи трехмерных электромагнитных полей.

4. Впервые получены примеры решений трехмерной теоретической обратной задачи для метода заряда, скалярного уравнения Гельмгольца и векторного уравнения Гельмгольца.

5. Показана зависимость решения теоретической обратной задачи для векторного уравнения Гельмгольца от выбора носителя информации.

6. Показана зависимость решения теоретической обратной задачи для векторного уравнения Гельмгольца от рельефа границы раздела земля-воздух и положения возбуждающего источника.

Заключение

.

Результатом работы является создание алгоритмов решения теоретической обратной задачи для электромагнитных полей на основе оригинальных уравнений с явно заданным оператором.

Показать весь текст

Список литературы

  1. .А. Расчеты пространственного распределения потенциальных полей и их использование в разведочной геофизике // Изв. АН СССР. Сер. геогр. и геофиз. 1947. № 1. С. 8−16- 1949. № 3. С. 43−50. Сер. геофиз. 1952. № 2. С. 1−18- 1954. № 1. С. 30−39.
  2. В. Я. Методы математической физики и специальные функции // М.: Наука, 1984.
  3. М.Н., Жданов М. С. Интерпретация аномалий переменного электромагнитного поля Земли. М.: Наука, 1981. 328 с.
  4. М.Н., Жданов М. С. Анализ аномалий переменного электромагнитного поля на поверхности многослойной горизонтально-неоднородной Земли. // Геомагнетизм и аэрономия, 1975, т. XV, № 2, с. 372 374.
  5. С.Н. Аналитическая природа решений дифференциальных уравнений эллиптического типа. Харьков: ХГУ, 1956. 95 с.
  6. А.И., Жданов М. С., Шилова A.M. К методике интерпретации аномалий переменного электромагнитного поля Земли // Физико-механические поля в деформирующих средах. Киев: Наукова думка, 1978. С. 140−145.
  7. Ю.И., Гаранский Е. М., Доброхотова И. А. Низкочастотная индуктивная электроразведка при поисках и разведке магнетитовых руд. М.: Недра, 1986. 192 с.
  8. Jl.JI. Основы электромагнитных зондирований. М.: Недра, 1965. 108 с.
  9. Г. Н. Теория Бесселевых функций. Часть I. // М.: ИЛ, 1949.
  10. B.C. Уравнения математической физики. М.: Наука, 1988. 512 с.
  11. Г. М. Интегральные преобразования и расположение особенностей логарифмического потенциала // Изв. АН СССР. Физика Земли. 1965. № 1.С. 76−89.
  12. Г. М. О вычислении стационарных электромагнитных полей в некоторых кусочно-неоднородных средах // Изв. АН СССР. Физика Земли. 1973. № 9. С. 63−75.
  13. Г. М., Хачай О. А., Шестаков А. Ф. О методе особых точек для интерпретации электромагнитных геофизических полей // Электромагнитные зондирования. М.: ИЗМИР АН, 1984. С. 32−33.
  14. В.Б., Литвиненко O.K., Страхов В. Н. и др. Метод регуляризации А.Н. Тихонова в современной разведочной геофизике. // Изв. АН СССР Физика Земли, № 1,1977. С. 24−35.
  15. В.Б., Старостенко В. И. Регуляризующий алгоритм решения системы нелинейных уравнений в обратных задачах геофизики. // Изв. АН СССР Физика Земли, № 3, 1976. С. 44−53.
  16. В.И., Жданов М. С. Методы решения обратных задач геофизики. // в кн.: Вычислительная математика и техника в разведочной геофизике. М.: Недра, 1982. С. 89−105.
  17. В.И., Захаров Е. В. Метод расчета поля постоянного тока в неоднородных проводящих средах // Вычислительные методы и программирование: Сб. работ ВЦ МГУ. / Под ред. В. И. Дмитриева, А. С. Ильинского. М.: МГУ, 1973. С. 175−186.
  18. В.И. Электромагнитные поля в неоднородных средах. М.: МГУ, 1969.
  19. В.И., Фарзан Р. Х. Метод расчета аномального электромагнитного поля от локальной неоднородности. В сб. Математические модели электроразведки в геофизике. Будапешт. 1980.
  20. В.И., Захаров Е. В. Интегральные уравнения в краевых задачах электродинамики. М.: Изд-во МГУ, 1987. 167 с.
  21. В.И., Позднякова Е. Е. Метод и алгоритм расчета электромагнитного поля в слоистой среде с локальной неоднородностью в произвольном слое. Методы математического моделирования и вычислительной диагностики. М. Из-во МГУ. 1990. С. 133−141.
  22. А.Г. Особенности строения тектоносферы Уральского региона по электромагнитным данным // Физика Земли. 1994. № 6. С. 97−101.
  23. А.Г., Шестаков А. Ф., Варданянц И. Л., Годнева Г. С. Результаты глубинного магнитотеллурического зондирования в Уральском регионе // Физика Земли. 1990. № 2. С. 73−84.
  24. А.Г., Нургалиев Д. К., Астафьев П. Ф., Коноплин А. Д., Вишнев B.C. Особенности глубинной структуры Ново-Елховского и
  25. Ромашкинского месторождений углеводородного сырья по данным геоэлектрики // ДАН. 2006. Т. 406. № 5. С. 1−3.
  26. М.С. Разделение переменных электромагнитных полей Земли. // Изв. АН СССР Физика Земли, № 6, 1973. С. 43−54.
  27. М.С. Об аналитическом продолжении трехмерных электромагнитных полей // Изв. АН СССР. Физика Земли. 1973. № 4. С. 66−78.
  28. М.С. Аналитическое продолжение двумерных электромагнитных полей // Изв. АН СССР. Физика Земли. 1975. № 1. С. 54−65.
  29. М.С. Вопросы теории интерпретации глубинных электромагнитных аномалий на основе методов аналитического продолжения // Изв. АН СССР. Физика Земли. 1975. № 9. С. 59−73.
  30. М.С., Варенцов И. М., Голубев Н. Г. Определение положения геоэлектрических неоднородностей методами аналитического продолжения переменных геомагнитных полей // Геология и геофизика. 1978. № 7. С. 54−63.
  31. М.С. Продолжение нестационарных электромагнитных полей в задачах геоэлектрики // Изв. АН СССР. Физика Земли. 1981. № 12. С. 60−69.
  32. М.С., Френкель М. А. Метод электромагнитной миграции. М.: ИЗМИРАН, 1983.33 с.
  33. М.С., Френкель М. А. Метод электромагнитной миграции при решении обратных задач в геоэлектрике // Докл. АН СССР. 1983. Т. 271. № 3. С. 589−594.
  34. М.С., Френкель М. А. Метод миграции электромагнитных полей // Изв. АН СССР. Физика Земли. 1984. № 4. С. 60−74.
  35. М.С. Аналоги интеграла типа Коши в теории геофизических полей. М.: Наука, 1984. 326 с.
  36. М. С. Электроразведка. М.: Недра, 1986. 316 с.
  37. А.И. Переменные электромагнитные поля в электроразведке. М.: МГУ, 1960. 186 с.
  38. А.А. Решение обратной задачи потенциала // Докл. АН СССР. 1941. Т. 32. № 8. С. 546−547.
  39. Е.В., Ильин И. В. Интегральные представления электромагнитных полей в неоднородной слоистой среде // Изв. АН СССР. Физика Земли. 1970. № 8. С. 62−71.
  40. Е.В., Ильин И. В. Метод расчета электромагнитных полей в плоскопараллельной слоистой среде с локальными неоднородностями // Вычислительные методы и программирование. М, 1971. С. 83−108.
  41. В.К. Распределение особенностей потенциала и пространственный аналог теоремы Полиа // Математический сборник. Новая серия. 1956. Т. 40 (82). № з. с. 319−338.
  42. В.К. О распределении особенностей потенциала // Успехи матем. наук. 1956. Т. 11. Вып. 5(71).
  43. В.К. Интегральное уравнение обратной задачи теории потенциала// Докл. АН СССР. 1956. Т. 105. № 3. С. 400−412.
  44. В.К. О разрешимости обратной задачи логарифмического потенциала в конечном виде // Докл. АН СССР. 1956. Т. 106. № 4. С. 598−599.
  45. В.К. Интегральные уравнения первого рода и приближенное решение обратной задачи потенциала // Докл. АН СССР. 1962. Т. 142. № 5. С. 997−1000.
  46. В.К. О линейных некорректных задачах // Докл. АН СССР. 1962. Т. 145. № 2. С. 270−272.
  47. В.К. О некорректно поставленных задачах // Математический сборник. Новая серия. 1963. Т. 61. № 2. С. 211−223.
  48. В.К., Танана В. П., Васин В. В. Теория линейных некорректных задач и ее приложения. М.: Наука, 1978. 208 с.
  49. В.К. Об интегральных уравнениях Фредгольма 1 рода. // Диф. уравн., 1967, т. 3, № 3. С. 410−421.
  50. В.В., Мезенцев А. Н. Электроразведка в поляризующихся средах. Свердловск: УрО АН СССР, 1989. -128 с.
  51. В.В., Ратушняк А. Н. Векторные интегральные уравнения для градиента потенциала геофизических полей // Российский геофизический журнал. 1995. № 5−6, С. 4−10.
  52. В.В., Ратушняк А. Н. Моделирование геофизических полей при помощи объемных векторных интегральных уравнений. Екатеринбург: УрО РАН, 1999.-88 с.
  53. , Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: Наука, 1968. 720 с.
  54. Н.С. и др. Уравнения в частных производных математической физики. М.: Высшая школа, 1970. 710 с.
  55. В.И. Приближенные вычисления интегралов. М.: Физматгиз, 1959,380 с.
  56. М.М. О задаче Коши для уравнения Лапласа // Изв. АН СССР. Сер. матем. 1956. Т. 20. № 6. С. 53−60.
  57. М.М. К вопросу об обратной задаче теории потенциала // Докл. АН СССР. 1956. Т. 106. № 3. С. 861−864.
  58. М.М. Об интегральных уравнениях 1 рода. // Докл. АН СССР, 1960, т. 133. С. 1102−1105.
  59. М.М. О некоторых некорректных задачах математической физики. Новосибирск: СО АН СССР, 1962. 92 с.
  60. Э. Математический аппарат физики. М., 1960. 618 с.
  61. Г. Т., Чаплин А. Ф. Возбуждение электромагнитных волн. М.: Радио и связь, 1983. 296 с.
  62. П.С. Некоторые вопросы теории и алгоритмы решения задач метода искусственного подмагничивания. Свердловск: УНЦ АН СССР, 1982. 32 с.
  63. П.С. Интегродифференциальные уравнения обратной задачи для магнитного поля токов растекания // Методы интерпретации и математического моделирования геофизических полей. Свердловск: УНЦ АН СССР, 1983.
  64. П.С. О решении прямой и обратной трехмерной задачи магниторазведки в параметрических классах // Изв. АН СССР. Физика Земли. 1983. № 3. С. 52−57.
  65. П.С. О решении обратной задачи электроразведки на постоянном токе для произвольных классов потенциалов. // Изв. АН СССР. Физика Земли. 1986. № 1. С. 87−92.
  66. П.С. О решении обратной задачи для магнитного поля токов растекания. // Методы интерпретации и математическое моделирование геофизических полей. Свердловск: УрО АН СССР, 1988. С. 24−27.
  67. П.С. Интегродифференциальные уравнения обратных задач для переменных электромагнитных полей. // Изв. АН СССР. Физика Земли. 1990. № 5. С. 55−62.
  68. П.С. Явные уравнения обратных задач для электромагнитных полей // Тез. докл. III Научно-технического совещания по Геотомографии. Свердловск: УрО АН СССР, 1991. С. 90−93.
  69. П.С. Уравнение обратной задачи для волнового электромагнитного поля // Теория и практика электромагнитных методовгеофизических исследований: Сб. науч. трудов. Екатеринбург: Наука УрО, 1992. С. 3−5.
  70. П.С. О решении обратной задачи метода заряда // Изв. АН СССР. Физика Земли. 1993. № 7. С. 67−68.
  71. П.С. О двухэтапных методах интерпретации данных электроразведки на постоянном токе // Изв. АН СССР. Физика Земли. 1994. № 9. С. 91−93.
  72. П.С. Об интерпретации электромагнитных данных // Геофизика. 1994. № 4. С. 41−46
  73. П.С. Об определении границы трехмерного изолятора // Изв. АН СССР. Физика Земли. 1995. № 4. С. 32−33.
  74. П.С., Рублев A.JI. О решении объемной обратной задачи для уравнения Гельмгольца // Институт геофизики УрО РАН. Екатеринбург, 1996. Депонировано в ВИНИТИ 10.01.96.
  75. П.С., Рублев A.JI. Об одном алгоритме решения объемной обратной задачи метода заряда // Институт геофизики УрО РАН. Екатеринбург, 1996. Депонировано в ВИНИТИ 10.01.96.
  76. П.С. Обратные задачи электромагнитных геофизических полей. Екатеринбург: УрО РАН, 1996.144 с.
  77. П.С., Рублев A.JI. О решении объемной обратной задачи для векторного уравнения Гельмгольца // Электромагнитные исследования с контролируемыми источниками. Санкт-Петербург, 1996. Тезисы докладов международной конференции. С. 20.
  78. П.С., Рублев A.JI. Об одном алгоритме решения трехмерной обратной задачи электроразведки // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. Москва, ОИФЗ РАН, 1997. С 26.
  79. П.С. Об интегральных преобразованиях электромагнитных полей // Изв. АН СССР. Физика Земли. 1997. № 2. С. 69−70.
  80. П.С., Рублев А. Л. Алгоритм и примеры решения обратной задачи для векторного уравнения Гельмгольца // Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей. Ухта. 1998 г.
  81. П.С., Рублев А. Л. О выборе носителя данных при решении обратной задачи для эл.-маг. поля // Теория и практика геоэлектрических исследований. Сб. науч. трудов. Екатеринбург: УрО РАН, 1998. С. 3−10.
  82. П.С., Рублев A.JI. О решении трехмерной обратной задачи для уравнения Гельмгольца // Российский геофизический журнал. № 13 14, 1999 г. Санкт — Петербург, ВИРГ — Рудгеофизика. С. 98 — 101.
  83. П.С., Рублев А. Л. О решении теоретической обратной задачи для электромагнитного поля // Уральский геофизический вестник, № 1,2000. С. 79−82.
  84. П.С., Рублев A.JI. Алгоритм и примеры эквивалентных решений обратной задачи для электромагнитного поля // Электронный научно-информационный журнал «Вестник ОГГГГН РАН» № 1 (20)'2002.
  85. П.С., Рублев A.JI. О решении обратных задач для электромагнитных геофизических полей // XI Всероссийская школа-семинар «современные проблемы математического моделирования». Сборник трудов. Абрау-Дюрсо, 2−10 сентября 2005 г. С. 269−278.
  86. Л.Ф. Метод подобия в обратных задачах электроразведки // Геофизика. 2003. № 2, С. 46−51.
  87. Л.Ф. Статистическое оценивание результатов решения обратных задач электроразведки при использовании многопараметрических гладких моделей // Геофизика. 20 056. № 9, С. 74−80.
  88. Ф.И., Цирульский А. В. К вопросу о разрешимости обратной задачи логарифмического потенциала в конечном виде // Изв. АН СССР. Физика Земли. 1975. № 5.
  89. И.Л., Цирульский А. В. О решении трехмерной обратной задачи магниторазведки // Изв. АН СССР. Физика Земли. 1984. № 6. С. 79−85.
  90. И.И. Геофизические методы магнитовариационного зондирования и профилирования. Киев: Наукова думка, 1972. 226 с.
  91. И.И. Исследование аномалий электропроводности методом магнитовариационного профилирования. Киев: Наукова думка, 1975. 280 с.
  92. А.Л. Алгоритм решения трехмерной обратной задачи для электромагнитных геофизических полей // Международная конференция молодых ученых и специалистов «Геофизика 99». Тезисы докладов. Санкт-Петербург, 9−12 ноября 1999 г. С. 108−109.
  93. .С. Электродинамические основы квазистационарной геоэлектрики. М.: ИЗМИР АН, 1984. 183 с.
  94. .С. Теория, методика и интерпретация материалов низкочастотной индуктивной электроразведки. М.: Недра, 1973. -254 с.
  95. .С., Губатенко В. П. Аналитические решения электродинамических задач. М.: Наука, 1988. 344 с.
  96. Справочник по специальным функциям / Под ред. М. Абрамовича, И. Стигана. М.: Наука, 1979. 831 с.
  97. В.Н. Об аналитическом продолжении электрических полей, применяемых в некоторых методах электроразведки постоянным током // Изв. АН СССР. Сер. геофиз. 1963. № 3. С. 406−418.
  98. В.Н. Об аналитическом продолжении электрических полей в проводящем полупространстве //Изв. АН СССР. Сер. геофиз. 1963. № 3.
  99. В.Н. Теория приближенного решения линейных некорректных задач в гильбертовом пространстве и ее использование в разведочной геофизике. Ч. I-II // Изв. АН СССР. Физика Земли. 1969. № 8. С. 30−54- № 9. С. 64−97.
  100. В.Н. О методах приближенного решения линейных условно корректных задач // Докл. АН СССР. 1971. Т. 196. № 1.
  101. В.Н. Некоторые примеры эквивалентности и слабой единственности в плоской обратной задаче потенциала // Изв. АН СССР. Физика Земли. 1973. № 5. С. 39−62.
  102. В.Н. Об аналитическом продолжении трехмерных потенциальных полей, заданных по профилям, по формулам плоской задачи // Изв. АН СССР. Физика Земли. 1976. № 6. С. 25−39.
  103. В.Н., Валяшко Г. М. О проблеме выбора параметра регуляризации при решении линейных некорректных задач // Докл. АН СССР. 1976. Т. 228. № 1.С. 48−51.
  104. В.Н. Физический смысл и прикладное значение сингулярных источников комплекснозначных масс и мультиполей // Изв. АН СССР. Физика Земли. 1981. № 8. С. 62−91.
  105. В.Н., Иванов С. Н. Метод аналитического продолжения потенциальных полей // Актуальные проблемы вычислительной и прикладной математики. Новосибирск: Наука, 1983.
  106. В.Н., Иванов С. Н. Регуляризованные конечно-разностные алгоритмы восстановления функций и их использование в геофизике // Изв. АН СССР. Физика Земли. 1984. № 2. С. 63−83.
  107. В.Н. Основные направления развития теории и методологии интерпретации геофизических данных на рубеже XXI столетия. I // Геофизика. 1995. № 3. С. 9−18.
  108. В.Н. Основные направления развития теории и методологии интерпретации геофизических данных на рубеже XXI столетия. II // Геофизика. 1995. № 4. С. 10−20.
  109. В.Н. Геофизика и математика // Изв. РАН. Физика Земли. 1995. № 12. С. 4−23.
  110. В.Н. Геофизика и математика. Методологические основы математической геофизики. М.: ОИФЗ РАН, 1999. 40с.
  111. В.Н. Три парадигмы в теории и практике интерпретации потенциальных полей. М.: ОИФЗ РАН, 1999. 77с.
  112. Дж.А. Теория электромагнетизма. М.: Гостехиздат, 1948. 539с.
  113. В. Б. Некоторые перспективы интерпретации данных электромагнитных зондирований методами дифракционной томографии // Геология и геофизика. 1999. т.40. № 1. С. 121−133.
  114. А.Н. Об устойчивости обратных задач // Докл. АН СССР. 1943. Т. 34. № 5. С. 195−198.
  115. А. Н., Самарский А. А. Уравнения математической физики. М.: ГИТТЛ, 1953.679с.
  116. А.Н., Гласко В. Б. О применении методов регуляризации в задачах геофизической интерпретации // Изв. АН СССР. Физика Земли. 1975. № 1.С. 38−48.
  117. А.Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. 286 с.
  118. А.Н., Гласко В. Б., Дмитриев В. И. Математические методы в разведке полезных ископаемых. Сер. Математика, кибернетика. № 12. М.: Знание, 1983.
  119. Г. А., Шалаев С. В. Применение преобразования Фурье для решения обратной задачи гравиразведки и магниторазведки // Прикладная геофизика. 1961. Вып. 30. С. 162−178.
  120. Г. А., Голубчин С. И., Грознова А. А. Аналитическое продолжение векторных пространственных геопотенциальных полей с криволинейной поверхности наблюдений // Изв. АН СССР. Физика Земли. 1987. № 9. С. 39−46.
  121. Н.В., Цирульский А. В. К вопросу о разрешимости обратной задачи логарифмического потенциала для контактной поверхности в конечном виде // Изв. АН СССР. Физика Земли. 1976. № 10. С. 61−72.
  122. Н.В., Цирульский А. В. Об обратной задаче для контактной поверхности // Изв. АН СССР. Физика Земли. 1978а. № 3. С. 38−47.
  123. В.В. Об одной задаче продолжения нестационарных электромагнитных полей // Геология и геофизика. 1978. № 7. С. 105−111.
  124. Ф., Мизес Р. Дифференциальные и интегральные уравнения математической физики. Том II. М-Л.: ОНТИ, 1937. 998 с.
  125. О.А. Математическое моделирование электромагнитного зондирования трехмерных неоднородных сред // Электромагнитные методыгеофизических исследований: Сб. науч. трудов. Свердловск: УрО АН СССР, 1988. С. 5−16.
  126. О. А. Математическое моделирование площадного электромагнитного зондирования трехмерных неоднородных сред при индукционном и гальваническом типах возбуждения. Свердловск: УрО АНСССР, 1988. 32 с.
  127. О. А., Цирульский А. В. К вопросу об интерпретации повысотных электромагнитных наблюдений // Изв. АН СССР. Физика Земли.1988. № 12. С. 47−56.
  128. О. А., Цирульский А. В. Об интерпретации повысотных трехмерных электромагнитных аномалий // Изв. АН СССР. Физика Земли.1989. № 4. С. 68−72.
  129. О.А. Об интерпретации двумерных переменных и трехмерных стационарных аномалий электромагнитного поля // Изв. АН СССР. Физика Земли. 1989. № 10. С. 50−58.
  130. О.А. О решении обратной задачи для трехмерных переменных электромагнитных аномалий // Изв. АН СССР. Физика Земли. 1990. № 2. С. 55−59.
  131. О.А. Об эквивалентности и единственности результатов интерпретации переменных двумерных и трехмерных полей Изв. АН СССР. Физика Земли. 1991. № 6. С. 65−72.
  132. О.А. О трансформации повысотных электромагнитных аномалий с учетом рельефа границ // Геология и геофизика. 1997. № 3. С. 693 695.
  133. О.А., Новгородова Е. Н., Влох Н. П., Липин Я. И. Трехмерные электромагнитные исследования строения и состояния массива горных пород // Горная геофизика. Материалы международной конференции. С.-Петербург, 1998. С. 591−598.
  134. О.А., Новгородова Е. Н. Использование трехмерной методики индукционных электромагнитных исследований строения горных массивов // Изв. АН СССР. Физика Земли. 1999. № 6. С. 61−65.
  135. Д. Прикладное нелинейное программирование. // М.: Мир, 1975. 320 с.
  136. А.В. О некоторых свойствах комплексного логарифмического потенциала однородной области // Изв. АН СССР. Сер. геофиз. 1963. № 7. С. 1072−1075.
  137. А.В., Сиротин М. И. К вопросу об аналитическом продолжении логарифмического потенциала // Изв. АН СССР. Сер. геофиз. 1964. № 1.С. 105−109.
  138. А.В. О связи задачи об аналитическом продолжении логарифмического потенциала с проблемой определения границ возмущающей области // Изв. АН СССР. Сер. геофиз. 1964. № 11. С. 16 931 696.
  139. А.В. О единственности решения обратной задачи теории потенциала // Изв. АН СССР. Физика Земли. 1969. № 6. С. 60−65.
  140. А.В., Никонова Ф. И. К вопросу о разрешимости обратной задачи логарифмического потенциала в конечном виде // Изв. АН СССР. Физика Земли. 1975. № 5. С. 37−46.
  141. А.В., Пруткин И. Л. О решении обратной задачи гравиметрии для произвольных классов потенциалов. // Изв. АН СССР, Физика Земли № 11,1981, ч. I, II. С. 45−61.
  142. А.В. Функции комплексного переменного в теории и методах потенциальных геофизических полей. // Свердловск: УрО АН СССР, 1990. 135 с.
  143. С.В. Определение проводящего тела в электроразведке // Изв. АН СССР. Сер. геофиз. 1955. № 5. С. 468−474.
  144. С.В. Опыт вычисления потенциальной функции в нижней полуплоскости по ее значениям, замеренным на поверхности Земли // Докл. АН СССР. 1957. Т. 117. № 3. С. 403−406.
  145. С.В. Применение в геофизике аналитического продолжения потенциальной функции в нижнюю полуплоскость // Ученые записки ЛГИ. Т. 36. Вып. 2. Л.: Углетехиздат, 1959. С. 131−151.
  146. А.Ф. Некоторые вопросы теории и результаты модельных исследований определения особых точек двумерного ЭМ поля // Геология и полезные ископаемые Урала. IX Урал, конф. Свердловск: УНЦ АН СССР, 1986. С. 52−53.
  147. А.Ф. Метод особых точек для интерпретации двумерных электромагнитных полей, возбуждаемых в гармоническом режиме // Актуальные проблемы геофизики. Материалы IV Всес. конф. Москва, 1989. С. 177−190.
  148. А.Ф. О двумерном варианте метода особых точек для интерпретации монохроматических электромагнитных полей // Геология и полезные ископаемые Урала. Тез. докл. X Урал, конф. Свердловск, 1989. С. 4−5.
  149. А. Ф. Метод особых точек для интерпретации двумерных монохроматических электромагнитных полей // Изв. АН СССР. Физика Земли. 1990. № 2. С. 60−72.
  150. А.Ф. Двумерный электромагнитный вариант метода особых точек для слоистых сред // Изв. АН СССР. Физика Земли. 1990. № 5. С. 62−69.
  151. А.Ф. Метод особых точек для интерпретации двумерных электромагнитных полей, возбуждаемых в гармоническом режиме // Электромагнитная индукция в верхней части Земной коры. / Под ред. Ф. М. Каменецкого, Б. С. Светова. М.: Наука, 1990. С. 91−92.
  152. А.Ф. О методе особых точек для интерпретации потенциальных и гармонических электромагнитных геофизических полей // Материалы Всероссийской конференции-выставки «Санкт-Петербург 95». -С.-Петербург, 1995.
  153. А. Ф. Об использовании специальных функций при решении прямых и обратных задач электроразведки на постоянном токе //
  154. Геоэлектрические исследования контрастных по электропроводности сред. Сб. науч. труд. Екатеринбург: Наука Урал, отд., 1996. С. 28−36.
  155. А.Ф. Об аппроксимации трехмерных электромагнитных полей, возбуждаемых в гармоническом режиме, полями сингулярных источников. Екатеринбург: Ин-т геофизики УрО РАН, 1996. Деп. в ВИНИТИ 23.01.96. № 253-В96. 11 с.
  156. А.Ф. Уравнения ТОЗ для монохроматического ЭМ поля с учетом границы раздела двух сред. // Теория и практика интерпретации данных электромагнитных геофизических методов. Доклады Российской конф. Екатеринбург: Наука УрО, 1996. С. 65−68.
  157. А.Ф. Интегральные представления для решения граничных задач электромагнитного поля, возбуждаемого в гармоническом режиме //
  158. Теория и практика геоэлектрических исследований. Сб. науч. трудов. Вып.2. Екатеринбург: УрО РАН, 2000. С. 23−34.
  159. А.Ф. Интегральные представления для монохроматического электромагнитного поля при индукционном возбуждении трехмерного проводящего объекта // Уральский геофизический вестник. Екатеринбург, 2003. № 5. С. 98−105.
  160. Электроразведка: справочник геофизика / Под ред. В. К. Хмелевского и В. М. Бондаренко. Книга 1. М.: Недра, 1989. 438 с.
  161. М.И., Глинских В. Н. Электромагнитный каротаж: моделирование и инверсия. Новосибирск: Изд-во СО РАН, Филиал «Гео», 2005. 135 с.
  162. Carleman Т. Les functions quasianalytiques. Paris, 1925. P. 3−6.
  163. Donald E. Livesay, Kun-Mu Chen. Electromagnetic fields induced inside arbitrary shaped biological bodies // IEEE Transactions on Microwave Theory and Techniques, 1974. Vol. MTT-22,No 12. P. 1273−1280.
  164. Hohmann G.W. Three-dimentional induced polarization and electromagnetic modelling // Geophysics, april 1975. Vol. 40, No2. P. 309−324.
  165. Martyshko P. S., Rublev A.L. On inverse problem in charge method // «Annals Geophysicae» Supplement 1 to Volume 14. General Assembly. EGS 96.
  166. Martyshko P. S., Rublev A.L. On 3-D nonlinear electromagnetic inverse problem // European Geophysical Society «Annals Geophysicae» Supplement 1 to Volume 15. (General Assembly of the EGS in Vienna, 21−27 April 1997).
  167. Martyshko P. S., Rublev A.L. On 3-D nonlinear electromagnetic inverse problem // EAGE 59th Conference, Geneva Switzerland Extended Abstracts, Volume 1. (59th EAGE Conference & Technical exhibition, 26−30 May 1997).
  168. Martyshko P. S., Rublev A.L. On 3-D nonlinear inverse problem // 8th Scientific Assembly of IAGA, Uppsala, Sweden. (Abstracts of the reports, 8−12 August 1997).
  169. P. S., Rublev A.L. 3-D Airborn Electromagnetic and Magnetic Data Integral Inversion // «Electromagnetic Induction in the Earth», Books of Abstract, Romania, 1998.
  170. Martyshko P. S., Rublev A.L. Algorithm and Numerical Examples 3D Electromagnetic Inverse Problem // EAGE 61st Conference, Helsinki Finland. Extended Abstract Book. June 1999.
  171. Martyshko P. S., Rublev A.L. Theoretical inverse problem for 3D electromagnetic field // Three-dimensional electromagnetics, Geoph. Developments series, v.7. SEG, Tulsa, USA. 1999.
  172. Martyshko P. S., Rublev A.L. Algorithm and numerical examples of 3D electromagnetic inverse problem // Second International Symposium on 3D Electromagnetics, Salt Lake City, USA, 1999. P. 158−161.
  173. Martyshko P. S., Rublev A.L. New method for 3-d electromagnetic inversion based on analytical approximation //15th Workshop on Electromagnetic Induction in the Earth. Cabo Frio, Brazil. August 19−26, 2000.
  174. P. S., Rublev A.L. 3-d electromagnetic and magnetic data integral inversion // Международная конференция «Проблемы геокосмоса». Санкт-Петербург. 22−26 мая 2000 г. С. 16−17.
  175. Martyshko P. S., Roublev A.L. On 3D Electromagnetic Inverse Problem in the Case of Arbitrary Relief // EAGE Abstracts. RAI, Amsterdam, the Netherlands. 11−15 June 2001. P 147.
  176. Milan Hvozdara, Kaikonnen P., Varentsov I.M. Algorithm for solving 3-D Problem of EM induction by means of a vector integral equation // Studia Geoph. et Geod., 1987. v.31. P. 369−385.
  177. Roy A. Continuations of electromagnetic fields III Geophysics. 1968. V.33. No 5. P. 834−837.
  178. Roy A. Continuations of electromagnetic fields II // Geophysics. 1969. V.34. No 4. P. 572−583.
  179. Wannamaker P.E., Hohmann G.W. and Sanfilipo W.A. Electromagnetic modeling of tree-dimensional bodies in layered earths using integral equations // Geophysics. 1984. V.49. No 1. P. 60−74.
  180. Weidelt P. Electromagnetic induction in three-dimentional structures // Geophysics. 1975. V.41. P. 85−109.
  181. Zonghou Xiong, Art Raiche, Fred Sugeng. A new integral equation formulation for electromagnetic modelling // International Symposium on Three-Dimentional Electromagnetics / Shlumberger Doll Research. -Ridgefield, Connecticut, USA, 1995. P. 93−102.
  182. Zhdanov M.S., Varentsov Iv.M., Bilinsky A.I. Formalized 2D interpretation of the induction anomaly in the Carpathians // Acta Geod., Geophys. Et Montanist. -Hung., 1983. V.18. No 1−2. P. 165−171.
Заполнить форму текущей работой