Бакалавр
Дипломные и курсовые на заказ

Механизмы фотохимической трансформации минеральных форм азота в природных и сточных водах

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

В экспериментах с различными добавками акцепторов ОН-радикалов показано, что ингибирующее влияние Си 2+ связано с образованием комплекса частичного переноса заряда иона меди с промежуточными продуктами фотолиза нитритного иона, а не с тушением возбужденного состояния нит-ритного иона; Промежуточные продукты фотолиза нитритов и нитратов, а также на коп-ление нитрит-иона в процессе фотолиза… Читать ещё >

Содержание

  • Глава 1. Литературный обзор
  • Глава 2. Методы исследования
  • Глава 3. Кинетические особенности фотолиза ионов нитрата и нитрита в водных средах
  • Глава 4. Фотолиз нитратов и нитритов в природных водах
  • Глава 5. Токсикологический аспект продуктов фотолиза нитритов 81 и нитратов в воде
  • ВЫВОДЫ

Механизмы фотохимической трансформации минеральных форм азота в природных и сточных водах (реферат, курсовая, диплом, контрольная)

Актуальность работы. Настоящая работа посвящена исследованию фотохимических механизмов превращения низкомолекулярных форм азота в модельных системах и природных водах. Актуальность этой работы обусловлена взаимосвязью фотохимических, химических и биохимических процессов, происходящих в природных водных объектах с участием минеральных форм азота. Являясь биогенными веществами, соединения азота играют важную роль в жизнедеятельности гидробионтов, оказывают заметное влияние как на самоочищение, так и на самозагрязнение водоемов. Сложный естественный цикл круговорота азота в биосфере, обеспечивающий жизнедеятельность организмов и приводящий в движение биологический поток, характеризуется способностью к саморегулированию. Чрезмерное и подчас неправильное использование азотсодержащих удобрений и факторы антропогенного воздействия могут привести к нарушению равновесия в цикле и накоплению того или иного низкомолекулярного соединения азота, обладающего токсичными свойствами, например, нитритов или нитрозаминов. Последние соединения известны своими канцерогенными свойствами. Накопление определенных соединений связанного азота приводит не только к нарушению процессов самоочищения водоемов, но и к увеличению количества токсичных форм азота в сельскохозяйственных продуктах.

С другой стороны, низкомолекулярные формы азота под действием солнечного излучения являются активными генераторами свободных радикалов, которые в свою очередь эффективно окисляют трудно окисляемые в естественных условиях химические соединения. Применение искусственного ультрафиолетового излучения может значительно ускорить процессы трансформации загрязняющих веществ в промышленной очистке сточных вод с участием минеральных форм азота.

Основные положения, выносимые на защиту гу | 2 I.

— ионы Си и Fe ингибируют процесс УФ-фотолиза нитритных ионов в дистиллированной воде, не оказывая влияния на скорость фотолиза нитратных ионов. Это позволило определить эффективную константу скорости УФ-фотолиза нитрата в дистиллированной воде без учета мешающего влияния процесса взаимопревращения этих ионов;

— в экспериментах с различными добавками акцепторов ОН-радикалов показано, что ингибирующее влияние Си 2+ связано с образованием комплекса частичного переноса заряда иона меди с промежуточными продуктами фотолиза нитритного иона, а не с тушением возбужденного состояния нит-ритного иона;

— промежуточные продукты фотолиза нитритов и нитратов, а также на коп-ление нитрит-иона в процессе фотолиза нитрат-иона не влияют на общее снижение токсичности в экспериментах с модельными загрязняющими веществами на примере паранитрозодиметиланилина и раствора черного щелока;

— в процессе УФ-фотолиза нитрита и нитрата наблюдается эффективная де-токсикация модельных загрязняющих веществ и денитрификация минеральных форм азота.

Цель работы состояла в выяснении ключевых механизмов окислительно-восстановительных и фотохимических процессов низкомолекулярных форм азота с участием ионов переходных металлов и органических соединений, а также в оценке роли этих процессов в формировании качества и самоочищающей способности природной водной среды.

В связи с поставленной целью необходимо было решить следующие задачи: на примере модельных растворов низкомолекулярных форм азота изучить типовые механизмы процессов фотохимической и окислительно-восстановительной трансформации с участием ионов металлов переменной валентности и органических акцепторов свободных радикаловисследовать фотохимические и окислительно-восстановительные процессы, протекающие в природных водах с участием минеральных форм азотаисследовать пространственное распределение минеральных форм азота в водных объектах различных географических зон, в разные сезоны года и отличающиеся антропогенной нагрузкой.

Научная новизна исследования заключается: в выявлении детальных, неизвестных ранее механизмов фотохимической трансформации нитритных и нитратных ионов в присутствии ионов металлов переменной валентностив обнаружении зависимости скорости фотохимической трансформации от добавок ионов меди (II) и ионов железа (II)/(III) — в установлении зависимости скорости фотохимической трансформации от присутствия спиртовв изучении механизма взаимодействия растворенной в воде окиси азота с ионами меди (II) в анаэробных условияхв проведении экспедиционных исследований по содержанию низкомолекулярных форм азота в различного рода природных водных объектах (реки, моря, озера, подземные воды), расположенных в разных географических зонах.

Результаты исследования фотолиза нитритов и нитратов на примере модельных загрязняющих веществ позволяют рекомендовать использование УФ облучения для очистки и детоксикации сточных вод.

Показать весь текст

Список литературы

  1. Э.Н., Безбородое А. А. и др. Практическая экология морских регионов. Черное море.-Киев.:Наукова думка, 1990.-251 с.
  2. С.В., Клюев Н. Н., Коронкевич Н. И., Швыдкий В. О. Опыт гидроэкологической оценки административного района //Известия Академии наук СССР. Серия географическая, М.:-1997.-1.-с.83−95.
  3. Г. Г., Сычев, А .Я., Швыдкий В. О. Кинетика и катализ трансформации минеральных форм азота в водной среде //Тр. сов.-амер. Симпозиума «Поведение пестицидов и химикатов», Айова-сити, США, окт. 1987 г., Л., Гидрометеоиздат,-1991 .-с.421−424.
  4. В.Л., Рудаков Е. С. Химия пероксинитрита. Кинетика и механизм реакции //Ж. Успехи химии.- 2006,№ 75 (5), с. 422−444.
  5. Е.П. Основные особенности распределения и динамики микроэлементов (тяжелых металлов) в водохранилищах Днепровского каскада // Вестник АН УССР.- 1978, № 12, с.78−81.
  6. Ю.В., К.О. Ласточкина, З. Н. Болдина. Методы исследования качества воды водоемов. М, «Медицина».- 1990.- стр.74−78.
  7. Ю.И., Дука Г. Г., Батыр Д. Г., Травин С. О. Химия координационных соединений //Координационная химия.-1989,-т. 15.-№ 6.-с.291−298.
  8. Ю.И., Дука Г. Г., Эрнестова Л. С. Процессы токсикации и механизмы самоочищения природной воды в условиях антропогенных воздействий. Изв. АН Молд. ССР, серия биол. и хим. Наук.- 1983.-№ 5.-с. 3−21.
  9. Alvarez В., Denicola A., Radi R. The theoretical perspective photolysis // Chem. Res. Toxicol.-1995.-8.-p.859−862.
  10. Barat F., Gilles L., J. Sutton Flash photolysis of the nitrate ion in aqueous solution: excitation at 200 nm // J. Chem Soc. 1970, A, N. l l, p. 1982−1986.
  11. Barat F., Hickel В., Sutton J. Hydroxyl radical production // Chem. Com-mun.-1969.-p.l25−130.
  12. Bartberger M.D., Olson L.P., Houk K.N. Mechanisms of peroxynitrite oxidations and rearrangements: The theoretical perspective //Chem. Res. Toxi-col.-1998.-ll.-p.710−711.
  13. Bayliss N.S., Bucat R.B. Photolysis of aqueous nitrate solutions // Aust. J. Chem. 1975. Y.28 (9). p. 1865−1878.
  14. Beckman J.S., Beckman T.W., Chen J., at al. Apparent hydroxyl radical production by peroxynitrite imhlications for endothelial injury from nitric-oxide and superoxide //Proc. Natl. Acad. Sci. USA.-1990.-87.-p. 1620−1624.
  15. Bekman J.S., Chen J., Ischiropoulos H., Crow J.P. Oxidative chemistry of peroxynitrite // in Methods in enzymology. Oxygen radicals in biological systems.-1994.- 233.-p. 229−240.
  16. Bernhardt H., Hoyer O., Kick K., Schoenen D., Gebel J., Hengesbach В., Kolch A., Karanis P., Ruden H., Sonntag C. von, Schuchmann H-P.Research of peroxynitrite oxidations //Wasser Abwasser.-1994.-135.-p.677−681.
  17. Bilski P., Chignell C.F., Szychlinsski J., Borkowski A., Oleksy E., Reszka K. Hydroxyl radical production from nitrite //J. Am. Chem.Soc.-1992.-114.-p.549−553.
  18. Buch R.R., Lane Т.Н., Annelin R.B., Frue C.L. Oxygen radicals in biological systems //Environ. Toxicol.Chem.-1984.-3.-p.215−220.
  19. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. Critical rewiew of Rate constants for reactions of hydrated electrons, hydrogen atoms and hy-droxyl radicals in aqueous solution // J.Phys.Chem. Ref.Data.- 1988.-17.-p. 513−886.
  20. Dahl E. E ., Saltzman E.S., de Bruyn W.J. The aqueous phase yield of alkyl nitrates from ROO+NO. Implications for photochemical production in sea-water //Geophysical Research letters.- 2003.- v.30.-p.25−29.
  21. Daniels F., Meyers R.V., Belardo E.V. Photochemistry of the aqueous nitrate system. 1. Excitation in the 300-nm band // J. Phys. Chem. 1968. V. 72 (2), p.389−399 .
  22. Denicola A., Freeman B.A., Trujillo M., Radi R. Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations // Arch. Biochem. Biophys., 1996, 345, p.49−58.
  23. Edwards J.O., Plumb R.C. The chemistry of peroxonitrites // Prog. Inorg. Chem., 1994,41, p. 599−635.
  24. Fischer M., Warneck P. Peroxynitrite reaction with bicarbonate //J. Phys. Chem.-1996.- 100.-p. 18 749−18 753.
  25. Goldstein S., Czapski G., Formation of peroxynitrate from the reaction of peroxynitrite with C02: avidence for carbonate radical production // J. Am. Chem. Soc., 1998, 120, 3458−3463.
  26. Gonzalez M.C., Braun A.M. Vacuum-UV photolysis of aqueous solutions of nitrate: Effect of organic matter .1. Phenol //J. Photochem. Photobiol.-1996a.-A.-93 .-p. 7−19
  27. Gonzalez M.C., Braun A.M. VUV photolysis of aqueous-solutions of nitrate and nitrite //Res. Chem. Intermed. -1995.-21.-p.837−859.
  28. Gonzalez M.C., Braun A.M. Vacuum UV photolysis of aqueous solutions of nitrate. Effect of organic matter .2. Methanol //J. Photochem. Photobiol.-1996b.- 95 (l).-p. 67−72
  29. Gori E.G., Petriconi G.L., Papee H.M. Ultraviolet photolysis of sodium nitrate solutions in the laboratory and by sunlight //Nature.-1968.-217.-N5 (125).-p.248−249.
  30. Gow A., Duran D., Thom S.R., Ishiropoulos H. Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration // Arch. Biochem. Biophys., 1996, 333, p. 42 -48.
  31. Haag W.R., Hoigne J. Water pollutions // Chemosphere.-1985.-14.-p. 16 591 666.
  32. Halfpenny E. and Robinson P.L. Formation and decay of peroxynitrite //J. Chem. Soc.- 1952, p.928−932
  33. Hamilton R.D. Photolysis pollutants in ocean// Limnol. Oceanogr.-1964.-9.-p.107−115.
  34. Hughes M.N., Nicklin H.G. The chemistry of pemitrites. Part 1 Kinetics of decomposition of pernitrous acid//J. Chem.Soc.-1968.- (A).-2.-p. 450−452
  35. Huie R.E., Neta P. Kinetics of one-electron transfer-reactions involving CL02 and N02 /Я. Phys. Chem. -1986.-90.-p.l 193−1198
  36. Keith W.G., Powell R.E. Kinetics of decomposition of peroxynitrous acid //J. Chem.Soc. 1969, A, Nl, p. 90.
  37. Kissner R., Nauser Т., Bugnon H., Lye P.G., Koppenol W.H. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis.-l 997.-10.-p. 12 851 292.
  38. Koch T.G., Sodeau J.R. Photochemistry of nitric-acid in low-temperature matrices // J. Phys. Chem., 99 (1995), p.10 824−10 829.
  39. Kolpin D.W., Kalkhoff S.J. Formation and properties of peroxynitrite //Environ. Sci. Technol.-1993.-27.-p.l34−140.
  40. Koppenol W.H. Peroxynitrite uncloaked? // Chem. Res. Toxicol.-1998.-lL-p.716−717.
  41. Kotzias D., Parlar H., Korte F. Formation and decay of peroxynitric acid //Naturwissenscenscaften.- 1982.-69.-p.444−453.
  42. Kuhn E.P., Zeyer J. et al. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns // Appl. and Envir. Microbiol. 1988. V. 54. p. 443−451.
  43. LeMercier J.-N., Padmaja S., Cueto R., Squadrito G.L., et. all. Carbon dioxide modulation of hydroxy lation and nitration of phenol by peroxynitrite// Arch. Biochem. Biophys., 1997, 345 p. 160 -170.
  44. LeMercier J-N., Padmaja S., Cueto R., Squadrito G.L., Uppu R.M. at al. Carbon dioxide modulation of hydroxy lation and nitration of phenol by peroxynitrite // Arch.Biochem.Biophys. -1997.-345.-p. 160−170
  45. Т., Sehested K. /Formation and decay of peroxynitric acid A pulse-radiolysis study//J. Phys. Chem., 1993,97, p. 6664−6669.
  46. Lymar S.V., Hursi J.K. Radical nature of peroxynitrite reactivity// Chem. Res. Toxicol., 1998, 11 p.714−715.
  47. Lymar S.V., Hurst J.K. Carbon dioxide: Physiological catalyst for per-oxynitrite-mediated cellular damage or cellular protectant? // Chem. Res. Toxicol., 1996, 9, p.845−850.
  48. Lymar S.V., Hurst J.K. C02-catalyzed one-electron oxidations by peroxynitrite: Properties of the reactive intermediate // Inorg. Chem. 1998, 37, p. 294−301.
  49. Lymar S.V., Hurst J.K. Rapid reaction between peroxonitrite ion and carbon-dioxide implications for biological-activity // J.Am. Chem. Soc., 1995, 117, p. 8867−8868.
  50. Lymar S.V., Jiang Q., Hurst J.K. Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite // Biochemistry, 1996,35, p.7855−7861.
  51. Mack J., Bolton J.R. Photocemistry of nitrite and nitrate in aqueous solution: arewiew// J. Photochem. andPhotobiol.-1999.-128.-p.l-13
  52. Mahoney L.R. Evidence for the formation of hydroxyl radicals in the izomerization of pernitrous acid to nitric acid in aqueous solutions //J.Am.Chem.Soc.- 1970.-92.-p. 5262−5263
  53. Merenyi G., Lind J., Goldstein S., Czapski G. Peroxynitrous acid homo-lyzes into (OH)-O-center dot and (N02)-N-center dot radicals // Chem. Res. Toxicol. 1998, 11 p.712−714.
  54. Моррег К., Zhou X. Photochemistry of aqueous nitrate ion // Science.-1990.-250.-p.661−670.
  55. Neta P., Maruthanmuthu P., Carton P.M., Fessenden R.W. Rate constants //J.Phys. Chem.-1978.-82.-p. 1875−1890.
  56. Ogata Y., Tomizawa K., Adachi K. Photo-oxidation of ammonia with aqueous hydrogen peroxide // Memoirs of the Faculty of Engeneering, Nagoya University.-1981 .-v.33.-1 .-p.58−65
  57. Padmaja S., Squadrito G.L., LeMercier J.-N., Cueto R., Pryor W.A. Kinetics, mechanism and the role of carbon dioxide// Free Radical Biol. Med., 1997, 23 p.917−926.
  58. Papee H.M., Petriconi G.L., Formation and decomposition of alkaline 'per-nitrite' //Nature, 1964, 204, p.142−144.
  59. Petriconi G.L., Papee H.M. Decomposition of sodium nitrate solutions under ultra-violet irradiation at 25 °C // J. Inorg. Nucl. Chem. 1968, V. 30, N 6, p. 1525−1535.
  60. Petriconi G.L., Papee H.M. Effect of temperature on the ultraviolet decomposition of sodium nitrate solutions // Ricerca scient.,-1968.-38.-N.5.-p.455−458.
  61. Plumb R.C., Edwards J.O. Color-centers in UV-irradiated nitrates// J. Phys. Chem., 1992,96(8), p. 3245−3247.
  62. R.C., Edwards J.O., Hermann M.A. / Problem of concurrent measurements of peroxonitrite and nitrite contents// Analyst, 1992,117, p. 16 391 641.
  63. PIumb R.C., Tantayanon R., Libby M., Xu W.W. Chemical-model for Viking biologyexperiments-implications for the composition of the martian re-golith//Nature.-1989.-338.-p.633−635.
  64. Pryor W.A., LeMercier J.-N., Zhang H., Uppu R.M., Squadrito G.L. The catalytic role of carbon dioxide in the decomposition of peroxynitrite // Free Radical Biol. Med., 1997, 23, p.331−338.
  65. Qiu Xing-Chu, Zhu Ying-Quan. Analusis.- 1987.- v. 15.- N 5.- p. 254−258.
  66. Radi R., Beckman J.S., Bush K.M., Freeman B.A. Peroxynitrite oxidation of sulfhydryls the cytotoxic potential of superoxide and nitric-oxide // J. Biol. Chem.-1991.-266.-p.4244−4250.
  67. Russi H., Kotzias D., Korte F. Water treatment// Chemosphere.-1982.-11.-p.1041−1046.
  68. Shuali U., Ottolenghi M. et. al. On the photochemistry of aqueous nitrate solution excited in the 195-nm band // J. Phys. Chem. 1969, 73, N.10,p. 3445−3451.
  69. Sonntag С. von, Schuchmann H-P. UV treatment of water //J. Water Supply Res. Technol. Aqua.-1992.-4l.-p.67−76.
  70. S6rensen M., Frimmel F.H. Water treatment and supply // Water Res.-1997.-31.-p.2885−2893.
  71. Squadrito G.L., Pryor W.A. The nature of reactive species in systems that produce peroxynitrite // Chem. Res. Toxicol.-1998.-ll.-p.718−719.
  72. Strickler S.J., Kasha M. Solvent effects on the electronic absorption spectrum of nitrite ion // J. Am. Chem. Soc. 1963. V. 85. p. 2899−2905.
  73. Torrents A., Anderson B.G., Bilboulian S., Johnson W.E., Hapernan C.J. The role of reactive species //Environ. Sci. Technol.-1997.-31.-p.1476−1488.
  74. Treinin A. The photochemistry of oxyanions //Israel journal of chemistry .-1970.-8.-p.103−113.
  75. Treinin A., Hayon E. Photochemistry of nitrous acid //J. Chem. Soc.-1970.-v.92.-p.5821−5230.
  76. Turnipseed A.A., Vaghjiani G.L., Thompson J.E., Ravishankara A.R. Photodissociation of HNO3 at 193, 222, and 248 nm products and quantum yields //J. Chem. Phys. 1992, 96(8), p. 5887−5895.
  77. Uppu R.M., LeMercier J.-N., Squadrito G.L., Zhang H., Bolzan R.M., Pryor W.A. Nitrosation by peroxynitrite: Use of phenol as a probe // Arch. Bio-chem. Biophys., 1998, 358, p.1−16.
  78. Uppu R.M., Squadrito G.L., Pryor W.A. Acceleration of peroxynitrite oxidations by carbon dioxide// Arch. Biochem. Biophys., 1996, 327, p.335−343.
  79. Uppu R.M., Winston G.W., Pryor W.A. Reactions of peroxynitrite with aldehydes as probes for the reactive intermediates responsible for biological nitration // Chem. Res. Toxicol., 1997, 10, p.1331−1337.
  80. Villars D.S. Photochemistry of nitrates // J. Am. Chem. Soc. .-1972.-49.-p. 326−330.
  81. Yillars D.S., Photolysis of potassium nitrate //J. Am. Chem. Soc., 1927,49 (2), p. 326−337.
  82. Wagner I., Strehlow H., Busse G. Flash photolysis of nitrate ions in aqueous solution //Zeitschriflt fur physikalische chemie N.F., 1980, B. 123.S.l-33.
  83. Warneck P., Wurzinger C. Product quantum yields for the 305-nm photo-decomposition ofNCV in aqueous-solution// J. Phys. Chem. 1988, V. 92 (22). p. 6278−6283.
  84. Wink D.A., Mitchell J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide // FREE RADICAL BIOLOGY AND MEDICINE.- 1998.-25, (4−5).-p. 434 456
  85. Zafiriou O.C. Nitrates in water//J. Geophys. Res.-1974.-79.-p.4491−4501.
  86. Zafiriou O.C., Bouneau R. Wavelength-dependent quantum yield of OH radical formation from photolysis of nitrite ion in water // Photochem. Photobiol., 1987, V. 45, 6, p. 723−727.
  87. Zafiriou O.C., Joussot-Dubien J., Zepp R.G., ZikaR.G. Decomposition of nitrites by sunlight//Environ. Sci. Technol.-1984.-18.-p.358−364.
  88. Zafiriou O.C., True M.B. Nitrate photolysis in seawater by sunlight //Mar. Chem. 1979a. V. 8 p.33−42.
  89. Zafiriou O.C., True M.B. Nitrite photolysis as a source of free radical in productive surface waters //Geophys. Res. Lett. 1979b. V. 6 p.81−84.
  90. Zafiriou O.C., True M.B. Nitrite photolysis in seawater by sunlight //Mar. Chem. 1979c. V. 8 p. 9−32.
  91. Zellner R., Exner M., Herrman H. Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H202 at 308 and 351 nm in the temperature-range 278−353 К.// J. Atmosph. Chem. 1990. V. 10(4). p. 411 425.
  92. Zepp R.G., Hoigne J., Bader H. Nitric oxide in waste water//Environ. Sci. Technol.-l 987.-21 .-p.443−449.
  93. Zepp R.G., Cline D.M. Water treatment by UV radiation// Environ. Sci. Technol.-1977.-l l.-p.359−366.
  94. Zepp R.G., Hoigne J., Bader H. Nitrate-induced photooxidation of trace or101ganic chemicals in water //Environ. Sci. Technol. 1987. Y. 21. № 5.p. 443 450.
  95. Zepp R.G., Skurlatov Yu.I., Rutmiller J.F. Effects of aquatic humic substances on analysis for hydrogen peroxide using peroxidase catalyzed oxidation of triarylmethanes or p-hydroxyphenylacetic acid //Environ. Technol. Lett.-1988.-v.9.-p.287−298.
Заполнить форму текущей работой