Бакалавр
Дипломные и курсовые на заказ

Разработка и применение численных методов для комплексных программ актуальных задач пищевой промышленности

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Данная диссертация способствует формированию комплексного представления специалиста по автоматизированному способу решения производственных задач. Основная направленность проведенной работы ориентирована на обучение, подготовку и переподготовку специалистов технологического профиля. Разработанные компьютерные модели прошли апробацию в учебном процессе Московского Государственного университета… Читать ещё >

Содержание

  • Ф
  • Глава I. Обзор и выбор актуальных моделей пищевой промышленности
    • 1. 1. Информационное обеспечение современных пищевых технологий. 13 ^ 1.2. Модели рецептур продуктов пищевой биотехнологии
      • 1. 2. 1. Аналитический подход в построении моделей технологических смесей
      • 1. 2. 2. Экспертный подход в построении моделей технологических рецептурных смесей
    • 1. 3. Модели функционально-технологических свойств рецептур продуктов пищевой биотехнологии на примере гомогенных рецептурных смесей
    • 1. 4. Компьютерная квалиметрия: экспертные системы контроля качества продуктов пищевых биотехнологий
    • 1. 5. Моделирование связи экономических показателей технологий. Прогнозирование прибыли предприятия
    • 1. 6. Цель и задачи диссертации
  • Глава II. Использование численных методов
  • Ф
    • 2. 1. Идентификация параметров эмпирических зависимостей г технологических моделей
    • 2. 2. Регрессионно-факторный анализ в исследовании адекватности эмпирических зависимостей
    • 2. 3. Оценка статистической значимости регрессионных моделей технологических объектов
    • 2. 4. Диагностика качества технологий на основе критерия Пирсона-Фишера
  • Глава III. Компьютерное моделирование технологических процессов на основе выбранных актуальных моделей пищевой промышленности
    • 3. 1. Оптимизация производственных затрат
    • 3. 2. Оптимизация технологий рецептурных смесей
      • 3. 2. 1. Оптимизация технологий составления многокомпонентных рецептурных смесей
      • 3. 2. 2. Моделирование двух- и трёхкомпонентной рецептурной смеси
      • 3. 2. 3. Спектральные методы оценки нечётких потребительских свойств пищевого сырья и готовых продуктов
    • 3. 3. Сравнительный анализ технологий. Моделирование связи показателей технологий
    • 3. 4. Моделирование на основе нечёткого регрессионно-факторного анализа
  • Глава IV. Экономические модели технологических объектов
    • 4. 1. Анализ инвестиционных потоков
    • 4. 2. Отбор проектов инвестирования
    • 4. 3. Механизм оценки и прогнозирования хозяйственной деятельности предприятия
    • 4. 4. Прогнозирование прибыли технологического предприятия

Разработка и применение численных методов для комплексных программ актуальных задач пищевой промышленности (реферат, курсовая, диплом, контрольная)

Основное направление и актуальность исследований.

Успешное производственное предприятие любого профиля, в том числе и технологического, держится на трех основополагающих началах: качественном сырье и материалахсовременном оборудованиипередовых технологиях, среди которых большую роль играют информационные технологии управления, позволяющие оперативно и эффективно решать задачи по планированию, учёту и анализу деятельности предприятия [8].

Биохимики и технологи должны свободно владеть современными научными направлениями в области прикладной биотехнологии, теории анализа и синтеза технологических систем в объективных условиях производства. Но, к сожалению, системные знания в области пищевых технологий, основанные на информационных технологиях управления, в целом слабы, а иногда, к сожалению, и полностью отсутствуют. Это является объективной причиной того, что технологи не могут выступать в качестве аналитиковквалифицированно владеть методами, используемыми, например, для сравнения и описания пищевых смесейметодами, связанными с биофизикой пищевых сред. Вместе с тем, современные пищевые биотехнологии — это достаточно сложные объекты исследований, и без системного анализа нельзя интегрировать знания пищевой технологии, как в процессе микробиологических и биохимических превращений, так и в процессах моделирования, прогнозирования и управления производством в целом.

Естественно, что инструментом исследования пищевых биотехнологий будут являться математические методы исследования операций и сложных систем, разработанные в теории управления, принятии решений, а также современных теориях информации и информационных технологий. При этом использоваться данные методы могут и в условиях неопределенности, например, таких как отсутствие адекватных знаний о физических процессах в пищевых средах, неопределенность характеристик пищевого сырья, используемых средств контроля и воздействия, целевых критериев управления. Таким образом, решение проблем, возникающих перед перерабатывающими отраслями аграрно-промышленного комплекса, невозможно без использования основ научно-технического развития пищевой промышленности и методологических принципов анализа прикладных биотехнологий, фундаментом которых является системный анализ, моделирование и прогнозирование.

В ряде случаев бывает необходимо быстро представить результаты теоретических исследований и предварительные оценки некоторых методик и инженерных расчётов, проведя имитационное моделирование на компьютере. При этом совсем не обязательно изучать языки программирования: достаточно пользоваться штатными средствами современных, самых распространенных и легкодоступных пакетов обработки информации Microsoft Excel и Microsoft Access [38].

Для оптимизации, как отдельных технологических операций, так и технологий в целом, в настоящее время широко используется методология моделирования как инструмент изучения поведения объекта с помощью его математического описания. Основные успехи в этом направлении получены при моделировании детерминированных и стохастических технологических операций прикладных биотехнологий (Мизерецкий Н.Н., Ивашкин Ю. А., Косой В. Д., Красуля О. Н., Митин В. В., Николаев Н. С., Kormendy G., Barker R. и др.) [115*127].

Однако для моделирования технологий в реально существующих условиях производства необходимо учитывать объективную информационную неопределённость, обусловленную нечёткостью характеристик сырьевых компонентов, отсутствием надёжных и недорогих экспресс-анализаторов для определения качественных показателей в цикле «сырьё — полуфабрикат — готовый продукт», большой размерностью технологических задач. Результаты нечёткого моделирования в условиях неопределённости описаны в работах Серебрякова А. В. и Трефилова В. А. (масложировое производство), Митина В. В., Протопопова И. И., Рогова И. А., Липатова Н. Н., КрасулиО.Н. и Краснова А. Е. (переработка мяса), Тужилкина В. И. и Гольденберга С. П. (производство сахара), Zhang Q. (производство кондитерских изделий) [39 -т- 45].

Для прогнозирования конкретных биотехнологий используется технология экспертного оценивания. Причем, в основном, прогнозы носят описательный характер, в них редко используются результаты моделирования динамики технологических процессов (Комаров В.И., Небурчилова Н. Ф., Масленникова О. А. и др.) [118 -s-134].

Несомненно, деятельность в любой отрасли, в том числе и управлении технологическими процессами, требует от специалиста применения современных методов работы, знания достижений мировой математической мысли. Большинство же новых методов основано на эконометрических моделях, приемах и концепциях. Без глубоких знаний регрессионно-факторного анализа научиться их использовать невозможно.

Специфической особенностью деятельности любого специалиста, в том числе и технологического профиля, является работа в условиях недостатка информации и неполноты исходных данных. Анализ такой информации (как технологического, так и экономического направлений) требует специальных методов, которые составляют один из аспектов эконометрики, главной проблемой которой является построение эконометрической модели и определение возможности её использования для описания, анализа и прогнозирования реальных технологических процессов [52 63].

Действительно, не владея инструментарием регрессионно-статистического анализа, невозможно ни проверить уже имеющиеся эмпирические зависимости (например, уровня величины рН и щелочности от объемной доли спирта в водно-спиртовой смеси), ни получить новые зависимости, а, значит, и выдвинуть новые теории. Без статистического анализа нельзя построить сколько-нибудь надежного прогноза, а значит под вопросом и успех любого предприятия, в том числе и технологического профиля. Поэтому, несомненно, статистические методы, методы имитационного моделирования, фрактального и эвристического моделирования, тензорные методы моделирования должны быть использованы при построении и анализе моделей технологических объектов, и модели эти должны всеобъемлемо включать в себя не только аспекты технологического профиля, но и экономической деятельности технологических производств.

Таким образом, возможность имитационного моделирования технологических и экономических процессов пищевых производств с использованием возможностей пакета регрессионно-факторного анализа является актуальной задачей, требующей изменения, как методологических подходов, так и инструментов (методов, алгоритмов, программ) при разработке новых и совершенствовании существующих технологий.

Научная база и начальное состояние проблемы.

По окончании МГУТУ студентам факультета «Технологический менеджмент» присваивается звание «Инженер». Таким образом, подразумевается, что они должны владеть современными научными направлениями в области прикладной биотехнологии. Но, к сожалению, наши выпускники — это, в первую очередь, биохимики и технологи, а знания в области пищевых технологий, основанные на информационных технологиях управления, слабы. Поэтому основная направленность проведенной работы ориентирована на обучение, подготовку и переподготовку специалистов технологического профиля.

Цель и задачи исследования

Целью настоящей диссертации является разработка комплексных компьютерных моделей актуальных задач пищевой технологии, основанных на использовании структурной идентификации, регрессионно-факторного анализа и компьютерной квалиметрии, способствующих формированию у специалистов системных знаний в области пищевых технологий, базирующихся на передовых информационных технологиях управления.

В соответствии с поставленной целью основными задачами исследования являются:

— анализ и классификация актуальных моделей пищевой промышленности, основанных на применении численных методов;

— разработка комплексной имитационной модели деятельности предприятия пищевой промышленности, охватывающей основные аспекты производственной и экономической деятельности;

— создание моделей с применением численных методов регрессионно-факторного анализа прогнозирования ФТС пищевых продуктов;

— создание имитационных моделей с применением спектральных методов оценки нечетких потребительских свойств технологических объектов;

— разработка модели экспертного ситуационного управления производством в среде системы управления базами данных (СУБД) M.Access.

Научная новизна. В диссертации впервые получены следующие научные результаты: осуществлён новый подход в рассмотрении создания имитационной компьютерной модели деятельности пищевого производства не только как предприятия технологического профиля, но и как экономического объекта управления в аспекте применения регрессионно-факторного анализа, а именно:

• определена совокупность критериев, необходимых и достаточных, для построения и анализа эмпирических зависимостей моделирования технологических процессов;

• разработаны имитационные компьютерные модели технологических смесей на основе статистического анализа, позволяющие определять силу влияния массовых долей ингредиентов рецептурной смеси на функционально-технологические свойства смеси;

• на примере эмпирической зависимости функционально-технологических свойств (активной кислотности) водно-спиртовых смесей от вариации объемных долей спирта проведен компьютерный анализ точности, статистической значимости и адекватности построенной модели;

• на основе нечеткого регрессионно-факторного анализа построена эмпирическая модель временного ряда, позволяющая на основе имеющихся данных прогнозировать динамику рентабельности технологической продукции.

Практическая ценность работы.

На основе проведенного обзора имеющихся технологических моделей, основанных на применении численных методов, разработана целостная имитационная компьютерная модель технологического процесса с применением пакета регрессионного анализа, структурной идентификации и компьютерной квалиметрии.

В диссертационной работе получены следующие практические результаты, актуальные в исследовании технологических процессов:

— на примере эмпирической зависимости функционально-технологических свойств (активной кислотности) водно-спиртовых смесей от вариации объемных долей спирта проведен компьютерный анализ точности, статистической значимости и адекватности построенной модели;

— на основе нечеткого регрессионно-факторного анализа построена эмпирическая модель временного ряда, позволяющая на основе имеющихся данных прогнозировать динамику рентабельности технологической продукции.

Данная диссертация способствует формированию комплексного представления специалиста по автоматизированному способу решения производственных задач. Основная направленность проведенной работы ориентирована на обучение, подготовку и переподготовку специалистов технологического профиля. Разработанные компьютерные модели прошли апробацию в учебном процессе Московского Государственного университета технологий и управления по специальностям 260 501 «Технология продуктов общественного питания», 80 401 «Товароведение и экспертиза товаров», 260 202 «Технология хлеба, кондитерских и макаронных изделий», 80 501 «Экономика и управление на предприятии».

На защиту выносятся:

• определенная совокупность критериев, необходимых и достаточных, для построения и анализа эмпирических зависимостей моделирования технологических процессов;

• разработанные имитационные компьютерные модели технологических смесей на основе статистического анализа, позволяющие определять силу влияния массовых долей ингредиентов рецептурной смеси на функционально-технологические свойства смеси;

• разработанный на примере эмпирической зависимости функционально-технологических свойств (активной кислотности) водно-спиртовых смесей от вариации объемных долей спирта компьютерный анализ точности, статистической значимости и адекватности построенной модели;

• построенная на основе нечеткого регрессионно-факторного анализа эмпирическая модель временного ряда, позволяющая на основе имеющихся данных прогнозировать динамику рентабельности технологической продукции.

Реализация работы и личный вклад автора.

Исследования по теме диссертации выполнялись автором с 2002 года и по настоящее время в Московском государственном университете технологий и управления (МГУТУ) Федерального агентства по образованию на кафедре «Информационные технологии». В диссертации использованы данные, полученные в результате экспериментальных исследований, проводимых сотрудниками кафедр «Технология продуктов общественного питания» и «Технология хлебопекарного, макаронного и кондитерского производств», лаборатории оптоэлектронной квалиметрии МГУТУ и ФИАН.

Все результаты, отраженные в разделах «Научная новизна» и «Практическая значимость», получены автором лично.

Автором лично получены следующие результаты:

— создана комплексная имитационная модель деятельности предприятия пищевой промышленности, охватывающей основные аспекты производственной и экономической деятельности;

— разработаны модели с применением численных методов регрессионно-факторного анализа прогнозирования ФТС пищевых продуктов;

— созданы имитационные модели с применением спектральных методов оценки нечетких потребительских свойств технологических объектов.

Апробация работы. Основные результаты исследований докладывались на следующих научных форумах: VIII Международной научно-методической конференции «Проблемы повышения качества подготовки специалистов», Москва, МГТА, 2002; IX Международной научно-практической конференции «Стратегия развития пищевой промышленности», Москва, МГТА, 2003; IX Международной научно-методической конференции «Проблемы управления качеством подготовки специалистов в системе непрерывного профессионального образования», Москва, МГТА, 2003; X Международной научно-практической конференции «Стратегия развития пищевой промышленности», Москва, МГТА, 2004; XI Международной научно-практической конференции «Стратегия развития пищевой промышленности» (международный форум «Ярмарка банков и инвестиционных проектов в АПК), Москва, МГУТУ, 2005; II научно-практической конференции «Проблемы качества безопасности и диагностики в условиях информационного общества», Сочи, 2005.

Построенные имитационные модели использованы в книге «Основы математического моделирования рецептур продуктов пищевой биотехнологии» (планируемый выпуск 2006 г.), а также в учебном процессе кафедры «Информационные технологии» МГУТУ при составлении лекций и лабораторных работ по дисциплинам «Моделирование процессов повышения эффективности использования сырьевых ресурсов», «Компьютерная квалиметрия», «Информационные технологии», «Информационное обеспечение товароведения и экспертизы товаров».

Публикации. Результаты по теме диссертации опубликованы в 14 научных работах, которые включают в себя 5 статей в журналах, 9 — в сборниках трудов научно-методических и научно-практических конференций.

Структура диссертации. Диссертация состоит из введения, 4-х глав, заключения, 2 приложений, списка литературы. Работа изложена на 167 страницах машинописного текста, содержит 189 наименований литературных источников, из которых 179 отечественных и 10 зарубежных авторов.

Выход.

Получение фокуса.

Потеря фокуса. .

Нажатие кнопки.

Двойное нажатие кнопки., Кнппкл пни*.. .

Все лЫ.

— Закройте форму и присвойте ей имя «Главная».

— Проверьте как работает форма. Для этого откройте ее кнопкой [Открыть].

Задание для самостоятельной работы: Добавьте в кнопочную форму несколько кнопок для ввода исходных данных. Каждая кнопка связана с одним из макросов, входящих в групповой макрос «Главный».

Кнопка Макрос.

Продавцы Главный. Продавцы.

Товары Главный. Товар

Продажи Главный. Продажи.

Для редактирования формы «Главная» откройте ее в режиме.

Конфигуратор".

После создания кнопок, закройте форму, а затем откройте ее в обычном режиме. Проверьте как работают кнопки на ввод новых строк:

— вставьте в список продавцов новую фамилию: Абрамова Н. С.

— вставьте в таблице «Товары» товары: Картофель.

Свекла Морковь добавьте в таблицу «Продажи» несколько строк Абрамову Н. С. по продаже овощей.

Задание5 :

ЗаданиеДобавьте в макрос «Главный» новый макрос «Выборка». Макрос «Выборка» должен открывать сложную форму «Продажи».

Заданиеб.

Создайте простой макрос для открытия формы «Главная». Этот макрос должен иметь имя «Autoexec». ^.

Макрос «Autoexec» запускается сразу же после открытия базы. Закройте базу и откройте ее снова.

ЗАКЛЮЧЕНИЕ

.

Показать весь текст

Список литературы

  1. Г. Г. Теория и практика оценки качества товаров: основы квалиметрии. М.: Экономика, 1982. — 256 с.
  2. С.А. Прикладная статистика. Основы эконометрики: Учебник для вузов: в 2 т. М.: ЮНИТИ-ДАНА, 2001. — 432 с.
  3. E.JI., ПахомовВ.Ф. Моделирование и оптимизация технологического процесса в пищевой промышленности. М.: Агропромиздат, 1987. — 272 с.
  4. С.А. Дискретные модели кинетических уравнений для смесей. Автореф. дисс. канд. техн. наук. М.: Институт прикладной математики им М. В. Келдыша РАН, 2002. — 36 с.
  5. Е.В., Блаженков В. В., Городов А. К. и др. Монодиспергирование вещества: принципы и применение. -М. :Энергопромиздат, 1991.
  6. Е.В., Дмитриев А. С. Монодисперсные системы и технологии. М.: Издательство МЭИ, 2002. — 375 с.
  7. Е.М. Разработка рецептурных составов и усовершенствованной технологии получения физиологически полноценных майонезов. Автореф. дисс. канд. техн. наук. М.: МГУПП, 2001.
  8. В.Н. Повышение эффективности процесса приготовления маргариновой эмульсии и совершенствование аппаратурного оформления. Автореф. дисс. канд. техн. наук. -М.: МГТА, 1999.
  9. В.А. Научно-практические основы комплексной оценки качества мяса и мясных продуктов. Автореферат. Дисс. Д-ра техн. Н.,-М., 1996.-42 с.
  10. Ю.Антипова JI.B., Глотов И. А., Рогов И. А. Методы исследования мяса и мясных продуктов. М.: Колосс, 2001. — 376 с.
  11. В.В. Принципы построения математических моделей и гибкого автоматизированного управления биохимическими процессами. Автореф. дисс. д-ра техн. н., -М., 1992. 36 с.
  12. М. П. Корнилов Ю.Г. Моделирование процессов пищевой промышленности. М.: // Легкая и пищевая промышленность, 1982. -177 с.
  13. Э.Э., Николаев Н. С., Рогов И.А, Рыжов С. А. Аналитические методы описания технологических процессов мясной промышленности. -М.: Мир, 2003. 184 с.
  14. БазараМ., ШеттиК. Нелинейное программирование. Теория и алгоритмы. -М.: Мир, 1982.-583 с.
  15. С.И. Методология и методика проектирования научно — практического исследования с целью получения продукции с заранее заданными параметрами. Автореф. дисс. канд. техн. наук. М.: НТЦ Развитие, 2004.-101 с.
  16. В. В. Совершенствование технологии вареных колбас с белково жировыми композициями. Автореф. дисс. канд. техн. наук. -М.: МГУПБ, 2003.
  17. З.Г. Сравнительный анализ методов прогнозирования научно-техническая информация. -М.: ВИНИТИ, 1986, сер. 2, № 1, с. 11−15
  18. С. И. Оптимизация. Элементы теории. Численные методы. Учебное пособие. М.: МЗ — Пресс, 2003.
  19. В.В., Гиневский А. Ф., Григорьев В. А., Дмитриев А. С. О генерации упорядоченных потоков монодисперсных капель методомвынужденного капиллярного распада струй// Докл. АН СССР, 1990, т.313, № 6, с. 1412−1417.
  20. Г. Н., Клебанов А. И. Прогнозирование в управлении техническим уровнем и качеством продукции. М.: Издательство стандартов, 1984
  21. БобренёваИ.В., Токаев Э. С., Николаева С. В. Создание экструзионных лечебно-профилактических продуктов // Мясная индустрия. 2002, № 2, с. 49 51.
  22. О.В. и др. О введении операторных моделей в практику описания технологий в нормативно-технической документации // Мясная промышленность, 1994, № 5, с. 10−12
  23. Большая Советская Энциклопедия. М.: Издательство «Советская Энциклопедия», 1976.
  24. Боровиков В.П. Statictica. Искусство анализа данных на компьютере. Спб.: Питер, 2003. — 688 с.
  25. В.П., Свешников С.В. Fazzy Technology: основы моделирования и решения эксперто-аналитических задач. — К.: Эльга, Ника-Центр, 2003. 296 с.
  26. A.M. Элементы научно-технического прогнозирования -М.: МТИММП, 1992
  27. В.И., Глаголев В. И., Матвеев В. В. Оптимальные методы обработки информации и многокомпонентной радиометрии. М.: Энергоатомиздат, 1985. 96 с.
  28. Н.П. Моделирование сложных систем. М.: Наука 1989. -300 с.
  29. В.И., Ильясов Б. Д. Интеллектуальные системы управления с использованием нечёткой логики. Учебное пособие. Уфа, 1995. -100 с.
  30. В.А. Теория подобия и моделирования. М.: Высшая школа, 1996.-422 с.
  31. X., ван Дам К. Термодинамика и регуляция превращений свободной энергии в биосистемах. М.: Мир, 1992. — 688 с.
  32. Витюк J1.A., Карпов В. Г. Влияние состава сырья на физико-химические свойства экструзированных продуктов // Хранение и переработка сельскохозяйственного сырья, 1997. Выпуск № 4.
  33. И.К., Загоруйко Е. А. Исследование операций: Учеб. для вузов. 2-е издание. — М.: Изд-во МГТУ им. Баумана, 2002. — 436 с.
  34. А.В., Ефимова Т. В., Камакин В. В., Красников С. А., Краснов А. Е., Маклаков В. В. Автоматизированная оптоэлектронная система с когерентным коррелятором для контроля наноструктур жидких сред // Автоматизация, № 10, 2004, с. 3 5.
  35. В.Г. Экономико-математические методы и модели планирования и управления в пищевой промышленности. М.: Агропромиздат, 1986. — 303 с.
  36. О.С., Паронян В. X., Круглов С. В., Козярина Г. И. Научные основы производства эмульсионных продуктов. М.: Пшцепромиздат, 2003. — 48 с.
  37. В.А., Скрипкин А. М., Сурнин В. А., Чижикова Т. В., Хатюшин А. И., Хатюшин П. А. Спектроанализатор для определения токсичных элементов в продуктах питания. Мясная индустрия, № 4, 2001, с. 22−23.
  38. И.П. Решение научных и инженерных задач средствами EXCEL, VBA, C/C++. Петербург: СПб, 2004.
  39. В.А. Уравнение Смолуховского. -М.: ФИЗМАТЛИТ, 2001.
  40. Д.В. Термодинамика. Статистическая механика. М.: Наука, 1982.
  41. А.В., Чесноков В. М., Степаненко А. И. К проблеме математического моделирования технологических процессов. Мясная индустрия, 1998, № 5, с. 16 20.
  42. В.М. Перспективы развития фундаментальных исследований мяса. // Мясная и молочная промышленность. 1990. № 6. С. 8−10.
  43. JI.M. Основы теории технологических процессов. Учеб. Пособие. Владикавказ, СОГУ, 1992. — 72с.
  44. ГОСТ 27 004 -85 «СИСТЕМЫ ТЕХНОЛОГИЧЕСКИЕ»
  45. Гришин В. Г. Образный анализ экспериментальных данных. М.: Наука, 1982.-237с.
  46. В.П. Новые информационные технологии на современном производственном предприятии // Пищевая промышленность № 7, 2003. с.38
  47. К.П. Расчет шнеков нагнетающих прессов. Основы расчета и конструирования машин и аппаратов пищевых производств / Под ред. проф. Соколова, А .Я. М., 1987, с. 34 — 37.
  48. Денискин В. В. Основы экономического прогнозирования пищевой промышленности. ~М.: Колос, 1993. -238с.
  49. М.Д. Основы теорий научно-технического развития производства. Учебное пособие-М.: МИНХ им. Плеханова, 1988
  50. С.В., Куломзина Е. Ю., Мячин М. В. Механизм оценки и прогнозирования хозяйственной деятельности предприятия // Пищевая промышленность № 1 2003, с. 10
  51. A.M., Мхитарян B.C., Трошин Л. И. Многомерные статистические методы: Учебник. М.: Финансы и статистика, 2003. -352 с.
  52. Дюк В. Обработка данных на ПК в примерах. Петербург: СПб, 1997.
  53. А.В., Косилов А. Т., Кузьмищев В. А. Компьютерное моделирование аморфных металлов и сплавов металл-металлоид. -Воронеж, Невинномыск: НИЭПУ, 2004. 108 с.
  54. Н.Н., Евтихиева О. А., Компанец И. Н., Краснов А. Е., КульчинЮ.Н., Одиноков С. Б., Ринкевичус Б. С. Информационная оптика: Учебное пособие. М.: Издательство МЭИ, 2000. — 612с.
  55. Ю.М. Методы стохастического программирования. М.: Наука, 1976.-240 с.
  56. М.В., Макаров В. В. Адаптивная идентификация нестационарных технологических процессов с марковскими параметрами в задачах стохастического управления // АиТ. 2002. № 2. С. 56−70.
  57. А.И., Карпов В. Г., Коптепова Е. К. Новое в технике и технологии производства пищевых продуктов экструзионным методом // Обзорная информация.-М.: ЦНИИТЭИПищепром, 1991.-40 с.
  58. А.И., Карпов В. Г., Койенко В. Г. Опыт промышленного освоения технологии экструзированных крахмалопродуктов // Обзорная информация. Крахмалопаточная промышленность.-М.: ЦНИИТЭИПищепром, 1982.
  59. Ю.А. Моделирование производственных процессов мясной и молочной промышленности. -М.: Агропромиздат, 1987. 256 с.
  60. Г. Д., Васильев Б. В. Процессы и аппараты пищевой технологии. -М.: Колос, 1999. 551 с.
  61. Ю.А., Андреев В. Н., Восканян О. С. Стабильность работы поточных линий и ранжирование факторов при производстве фасованного маргарина. Пищевая промышленность, 1992, № 5.
  62. Ю.А., Андреев В.Н Оптимизация процесса смешивания водно-жировых эмульсий. Международный журнал «Биотехнология и управление», 1993, № 3.
  63. Г. З. Применение спектроскопии оптического смешения в биологии. Спектроскопия оптического смешения и корреляция фотонов: перевод с англ. / Под ред. Г. Камминса и Э. Пайка. М.: Мир, с. 287 — 331, 1978. — 584 с.
  64. В.Г. «Получение набухающих крахмалов экструзионным методом». Автореф. дисс. канд. техн. наук.-М.: МТИПП, 1991. С. 63−68.
  65. В.В., Глебов М. Б. Математическое моделирование процессов химических производств. М.: Высшая школа, 1991. -400 с.
  66. С. Молекулярная нелинейная оптика. М.:Наука, 1981. — 672 с.
  67. IO.JI. Статистическая теория открытых систем. М.: ТОО «Янус», 1995. 624 с.
  68. А.Н. Основные понятия теории вероятностей. М. — Л., ОНТИ, 1936.
  69. А.В. Комплексные исследования рафинации жиров и разработка эффективных методов переработки. Автореф. дисс. канд. техн. наук. -М.: МГТА, 2003.
  70. Н.В., Рубчинский А. А. Моделирование и оптимизация технологических систем. Учебное пособие -М.: ВЗПИ, 1990. 175 с.
  71. B.C. и др. Справочник по теории вероятности и математической статистике. -М.: Наука, ГРФЛ-MJl, 1985. -640 с.
  72. В. Д., Егоров А. В. Прогнозирование качества смеси мороженного по физико-химическим характеристикам. Молочная промышленность, № 12, 2001.
  73. В.Д. Совершенствование процесса производства вареных колбас. -М.: Легкая и пищевая промышленность, 1983. -272с.
  74. B.C. Основные положения структурной перестройки научного обеспечения агропромышленного комплекса России // АПК: экономика, управление, 1997, № 4. с 22−23
  75. Дж. Методы прикладной математики. М.: Мир, 1972. — 323 с.
  76. С.А. Разработка моделей различения спектральных данных для идентификации качества пищевых сред. Автореф. дисс. канд. техн. наук. —М.: МГТА, 2003. — 24 с.
  77. А.Е. Метод фазового портрета в экспериментальном оценивании матриц плотности состояний электромагнитных полейдля их инвариантного детектирования и распознавания. Автореф. Дисс. Д-ра ф.-м. наук. М., 1997. — 50с.
  78. А.Е., Красников С. А. Синтез нечетких мер оптимального различения зашумленных данных // Параллельные вычисления и задачи управления. М.: Институт проблем управления, 2001. С. 33 -57.
  79. А.Е., Красников С. А., Компанец И. Н. Статистический синтез оптимальных по селективности мер сходства для различения нестационарных зашумленных сигналов // Радиотехника. 2002. № 1. С. 13−24.
  80. А.Е., Красников С. А., Николаева С. В., Зеленина Л. И., Головин И. М., Кузнецова Ю. Г., Бобренева И. В., Шайлиева М. М. Математическое моделирование, численные методы и комплексыпрограмм // Актуальные проблемы современной науки, 2005, № 4, с. 147−155.
  81. А.Е., Красников С. А., Николаева С. В., Зеленина Л. И., Головин И. М. Конструирование моделей характеристик смеси без учета взаимодействия ее компонентов // Техника и технология ISSN 1811−3532 -М., № 5(H) 2005, с. 93−98.
  82. А.Е., Красуля О. Н., Большаков О. В., Шлёнская Т. В. Информационные технологии пищевых производств в условиях неопределённости. -М.: ВНИИМП, 2001.-496 с.
  83. А.Е., Николаева С. В., Зеленина Л. И., Кузнецова Ю. Г., Козюкина О. Ю. Моделирование процессов приготовления хлебобулочных изделий с удлиненными сроками хранения // Техника и технология ISSN 1811−3532 М., № 6(12) 2005, с. 127−131.
  84. А.Е., Николаева С. В., Красников С. А., Кузнецова Ю. Г., Дроханов А. Н. Использование цветомикроструктурного анализа для контроля качества пищевых продуктов // Мясная индустрия, 2004, № 11, с. 60−62.
  85. А.Е., Николаева С. В., Зеленина Л. И., Головин И. М. Создание модели многокомпонентной рецептурной смеси с учетом физики взаимодействия ее компонентов. // Естественные и технические науки. 2005, № 3, с. 179−185
  86. А.Е., Николаева С. В., Зеленина Л. И., Дмитриев И.Н. Аналитический и экспертный подходы в проблеме конструирования моделей рецептурных смесей
  87. О.Н. Методологические основы анализа и определения перспектив развития технологий мяса и мясных продуктов в условиях информационной неопределенности. Автореф. дисс. д. техн. наук. М.: МГУПБ, 1999. — 46 с.
  88. О.Н., Краснов А. Е., Николаева С. В., Большаков О. В. Разработка методологии моделирования рецептур мясных продуктов в условиях информационной неопределённости // Мясная индустрия. 2004. № 2. С. 66−68.
  89. Краус С. Д. Оптимизация параметров экструзирования продуктов из крупяного сырья. Автореф. дисс. канд. техн. наук. М.: МТИНН, 1988.
  90. Г. Н., Шалыгина A.M., Волокитина З. В. Методы исследования молока и молочных продуктов. / Под общ. редакцией A.M. Шалыгиной. М.: Колос, 2000. — 368 с.
  91. Л.Д. Нраткий курс математического анализа: Учеб. Для вузов. М.:Наука. Гл.ред.физ.-мат. Лит., 1989. -736с.
  92. Купце У, Шведт Г. Основы качественного и количественного анализа: Пер. с нем. М.: Мир, 1997. — 424 с.
  93. . Поиск оптимальных решений средствами Excel 7.0. Спб.: BHV, 1997.
  94. Г. П. Исследование и разработка пленкообразующиго состава на основе поверхностно-активных веществ для пищевой продукции. Автореф. дисс. канд. техн. наук. -М.: МГТА, 2003.
  95. Л.Д., ЛифшицЕ.М. Теоретическая физика: Учебное пособие. В Ют. Т. V. Статистическая физика. 4.1. М.: Наука, Физматлит, 1995. — 608 с.
  96. Н.Н. Предпосылки компьютерного проектирования продуктов и рационов питания с заданной пищевой ценностью. // Хранение и переработка сельхозсырья, 1995, с. 4 9.
  97. Н.Н. Принципы проектирования состава и совершенствования технологии многокомпонентных мясных и молочных продуктов. Дисс. д. техн. наук. М.: — МТИММП, 1988. -670 с.
  98. Н.Н. Предпосылки компьютерного проектирования продуктов и рационов питания с заданной пищевой ценностью. // Хранение и переработка сельхозсырья. 1995. С. 4 9.
  99. Н.Н., Лисицын А. Б., Юдина с.Б. Совершенствование методики проектирования биологической ценности пищевых продуктов. // Мясная индустрия, 1997, № 9, с. 14−15.
  100. А.Л., Нейман В. Г. Решение экономико-статистических задач с помощью программы STATGRAPHICS Plus. М.: Моск. экон.-лингвист, ин-т, 2004.
  101. МажидовК.Х., КадировЮ.К. и др. Применение методов математического моделирования с целью выбора стационарных катализаторов для гидрирования жиров. Хранение и переработка сельхозсырья, 1997, № 1, с. 19.
  102. М. Ю. Совершенствование и использование методов инженерной реологии для прогнозирования и контроля физико-химических характеристик молочных продуктов в процессе ихразработки и производства. Автореф. дисс. канд. техн. наук. М.: МГУПБ, 2003.
  103. Н.Г., КовбасаВ.Н. Разработка оптимальных рецептур сухих завтраков повышенной биологической ценности с использованием математического моделирования. // Хранение и переработка сельхозсырья. 1998. № 1. С. 51 52.
  104. Н.А. Проектирование комбинированных продуктов питания на основе моделирования биологической ценности белка. Дисс. канд. техн. наук. М.: МТИММП, 1986. — 157 с.
  105. Н.Н. Математические задачи системного анализа. -М.: Наука, 1981.-487 с.
  106. С.Д., Жимбуева J1. Д., Базарова М. В., Жимбуев Э. Ж. Использование компьютерных технологий при определении влагосвязующей способности мяса. Мясная индустрия, № 5, 2004.
  107. В.В. Применение математической статистики при анализе вещества. -М.: Физматгиз, 1960.
  108. В.И. Многофакторный эксперимент: Планирование и обработка результатов: Учеб. пособие. Курган: КГУ, 1998.
  109. А.П., Траубенберг С. Е., Кочеткова А. А. и др. Пищевая химия. Под ред. Нечаева А. П. СПб.: ГИОРД, 2001. — 592 с.
  110. Р.И. Механика гетерогенных сред. Новосибирск: ИТФ, 1990.-231 с.
  111. Н.С. Моделирование процесса термообработки мясного сырья как сложной системы. Автореф. дисс. д. техн. н. М.: 1996.-55 с.
  112. С.В. Разработка моделей рецептурных смесей пищевых продуктов в условиях информационной неопределенности. Автореф. дисс. канд. техн. наук. -М.: МГТА, 2003.
  113. С.В. Методологические аспекты термодинамического подхода к синтезу моделей смесей // Информационные технологии, 2003, № 4, с. 45 52.
  114. Общая химия: Учебник / Под ред. Е. М. Соколовской и JI.C. Гузея. — 3-е изд., перераб. и доп. М.: Изд-во МГУ, 1989. -640с.
  115. Ю.А. Расчет рецептур смесей мороженого. // Молочная промышленность, № 12, 2002. С. 29 -21.
  116. Орвис В. Excel для учёных, инженеров и студентов: Пер. с англ. К.: Юниор, 1999.-528 с.
  117. .Д., Осипов В. В. Управленческий и финансовый анализ деятельности предприятия: Пособие для менеджеров. М.: Изд-во1. УРАО, 1997. 148 с.
  118. Г. М. Прикладная механика гетерогенных сред. -СПб.: Наука, 2000.-359 с.
  119. В.А. Стохастическое моделирование диспергирования и механоактивации гетерогенных систем. Автореф. дисс. д. техн. наук. Иваново, 2000.
  120. В.А., Крикунова Л. Н., Нечаев А. П. Характеристика базового материала для выбора научно-технических приоритетов в производстве основных групп продуктов питания. // Пищевая промышленность, 1995, № 4
  121. В.И., Карпов В. И., Ушаков И. Б. и др. Многофакторное планирование и анализ в медико-биологических исследованиях. Воронеж: Воронежский государственный университет, 2000. 68 с.
  122. Практикум по эконометрике. Под ред. Елисеевой И. И. М.: Финансы и статистика, 2001. 192с.
  123. И.И. Научно практические основы оптимизации технологий производства мясных и молочных продуктов. Автореф. дисс. д. техн. наук. -М.: МГАПБ, 1993. 42 с.
  124. В.И. Интегрированные территориальные информационные технологии. Дис. Д-ра техн. Наук в форме научного доклада, Новосибирск: 1991. — 54с.
  125. РайбманН.С. Основы управления технологическими процессами. -М.: Наука, 1988.-440 с.
  126. А.П. Избранные труды. Поверхностные явления в дисперсных системах. Физико химическая механика. — М.: Наука, 1979.
  127. И.А., Горбатов А. В., Свинцов В. Я. Дисперсные системы мясных и молочных продуктов. -М.: Агропромиздат, 1990. 320 с.
  128. П.Г. Разработка экструзионной технологии получения новых видов и специальных форм пищевых продуктов на основе зернового сырья: Автореф. дисс. канд. техн. наук.-М.: МГУПП, 1998. 34 с.
  129. P.M. Рациональное использование сырья в колбасном производстве. -М.: Агропромиздат, 1985. 256с.
  130. А.В., Трефилов П. А. и др. Разработка нечёткой экспертной системы для процесса получения масла. Тезисы докладов
  131. Всесоюзной научно-технической конференции «Пути развития науки и техники в мясной и молочной промышленности». М.: АгроНИИТЭИММП, 1987, с. 246−247.
  132. Г. В. Экономико-математическое моделирование факторного анализа прибыли мясопереработки предприятия в системе автоматизированного управления производством. Автореф. дисс. к.э.н.,-М., 1971.-24 с.
  133. В.В., Матвеев М. Г., Бугаев Ю. В. Математическое моделирование детерминированных технологических систем. Учебное пособие, Воронеж: 1994. — 77 с.
  134. ТаммИ.Е. Основы теории электричества. М.: Наука, 1976. 616 с.
  135. Тер-Крикоров A.M., Шабунин М. И. Курс математического анализа: учебное пособие для ВУЗов. М.: МФТИ, 1997. — 720 с.
  136. Технологическое оборудование пищевых производств / Под ред. проф. Азарова Б. Н. -М.: Агропромиздат, 1988. 156 с.
  137. ТуДж., ГонсалесР. Принципы распознавания образов. М.: Мир, 1978.411 с.
  138. В.И. Проблемы информатизации в агронауке и АПК. Известия вузов. Пищевая технология, 1995, № 1 2, с. 7 — 12.
  139. Ю.Н., Макаров А. А. Статистический анализ данных на компьютере. / Под ред. В. Э. Фигурнова М.: ИНФРА, 1998. — 528с.
  140. С. Математическая статистика. Пер. с англ. М.: Наука, 1967
  141. Управление качеством. М. — М.: Экономика, 1988
  142. УрбахВ.Ю. Биометрические методы (статистическая обработка опытных данных в биологии, сельском хозяйстве и медицине). -М.: Наука, 1964. -416 с.
  143. Н.Б. Физико-химическая динамика дисперсных систем. // Успехи химии, т.73, № 1, 2004, с. 41−61.
  144. И.Г. Управление агропромышленным комплексом. -М.: Агропромиздат, 1985. 335с.
  145. Физика простых жидкостей. Статистическая теория. Под ред. Г. Темперли, Дж. Роулинсона, Дж. Рашбрука: Пер. с англ.. М.: Мир, 1992.-с. 686 с.
  146. O.K. Информатизация технологий обучения в высшей школе-М., 2001.-284 с.
  147. В.М., Устименко Т. В., Бражников В. В. Оценка качества зерна крупяных культур на малых предприятиях. М.:ДеЛи принт, 2003.-168с.
  148. ФинниД. Введение в теорию планирования экспериментов. -М.: Наука, 1970.
  149. ХиксЧ.Р. Основные принципы планирования эксперимента. -М.: Мир, 1967.
  150. В.А. и др. Математическое моделирование и оптимизация химико-технологических процессов. Практ. руководство. Спб.: АНО НПО Профессионал, 2003. — 478 с.
  151. Хэмди А.Таха. Введение в исследование операций. М.: Изд. дом «Вильяме», 2001. 600 с.
  152. ЦыпкинЯ.З. Информационная теория идентификации. М.: Наука, 1995. 336 с.
  153. Т.А., Адлер Ю. П. Планирование эксперимента при построении диаграмм состав-свойство (обзор). В сб. «Применение математических методов для исследования многокомпонентных систем». -М.: «Металлургия», 1974, 11.
  154. Т.А., Маркова Е. В., Рубин B.C. Композиционное планирование для трехкомпонентных смесей с качественными факторами. В сб. «Применение математических методов для исследования многокомпонентных систем». — М.: «Металлургия», 1974.-69 с.
  155. И.К. Формирование аналитических критериев для оценки инвестиционной привлекательности // Пищевая промышленность № 6, 2003. с.41
  156. В.И. Контроль технологических процессов в производстве интегральных схем. Учебное пособие. — JI, 1982
  157. С.И. Математические методы и модели М., 2000
  158. Р. Информационное моделирование систем -искусство или наука. М.: Мир, 1988. — 418 с.
  159. Т.Б., Феррелл У. Р. Системы человек машина: Модели обработки информации, управления и принятия решения человеком — оператором. -М.: Машиностроение, 1980. -400 с.
  160. Г. Е. Дисперсионный анализ. М.: Физматгиз, 1963.
  161. JI.A. Разработка комплексных улучшителей для интенсивной технологии хлебобулочных изделий из пшеничной муки. Автореф. дисс. канд. техн. наук. -М.: МГУ1111, 2001. 192 с.
  162. Т.В., Аитова Н. В. Технология производства плодоовощных паст из традиционного сельскохозяйственного сырья. -М.: Пищевая промышленность, 2004. 120 с.
  163. Эконометрика. Под ред. Елисеевой И. И. М.: Финансы и статитсика, 2003. — 344с.
  164. Электрофизические, оптические и акустические характеристики пищевых продуктов. Справочник. Под ред. И. А. Рогова. -М.: Легкая и пищевая промышленность, 1981. -288 с.
  165. Box G. Statistics for experimenters: An introduction to design, data analysis, and model building. New York: Wiley, 1978.
  166. Das K., Lambev A., Manchev S. Mathematical modeling of basic processes in the extraction of corn flour. Khranitelna Promishlenost, 1989, № 38, v.4, p. 26−29.
  167. Dohhal M., Walthew D. The use of fuzzy expert systems to examine vague and complex problems in sugar engineering. Proceedings South African Sugar Technologists Association, 1995, v. 69, p. 186 190.
  168. Fisher R.A. Contributions to mathematical statistics. New York: John Wiley, 1950.
  169. Kormendy L., Erdos L., Sunal E. Mathematical model for the manufacture of frankfurter tupe sausages / Acta Alimentoza, Budapest: 1985, Volume 8/14, p. 343 355.
  170. , W. G., & Hunter, S. J. Statistics for experimenters. New York: Wiley, 1988.
  171. ThorneS., BurfootD., CheryanM., Nichols D. Mathematical modelling of food processing operations, 1992. 353 p.
  172. Winer B.J. Statistical Principles in Experimental Design. McGraw-Hill, 1962.
  173. Yan X., He W., Sun K. Application of microcomputer operated fuzzy mathematics to sensory appraisal of foods. Food Science China, 1995, № 2, v. 16, p.5 -9.
  174. Zhang Q., Litchfield J. Applying Fuzzy mathematics to product development and comparison. Food Technology, 1991, v. 45, № 7, p. 108−115.
Заполнить форму текущей работой