Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

ВлияниС нСорганичСского фосфата ΠΈ ΠΊΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназы

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠΠ΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназа (КЀ 1.2.1.9) (GAPN) ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΡƒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ окислСния Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфата Π² 3-фосфоглицСрат с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ восстановлСниСм NAD (P): 3-ЀГА + NAD (P)+ + Н20 3-Π€Π“ + NAD (P)H + 2? t. Π­Ρ‚ΠΎΡ‚ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π½Π°ΠΉΠ΄Π΅Π½ Π²ΠΎ Π²ΡΠ΅Ρ… Π²Ρ‹ΡΡˆΠΈΡ… растСниях, водорослях ΠΈ Ρ€ΡΠ΄Π΅ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². GAPN являСтся Ρ‡Π»Π΅Π½ΠΎΠΌ большого супСрсСмСйства Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«
  • Π§Π°ΡΡ‚ΡŒ 1. ΠšΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡ разобщСния окислСния ΠΈ Ρ„осфорилирования Π½Π° ΡΡ‚Π°Π΄ΠΈΠΈ гликолитичСской оксидорСдукции
  • Π§Π°ΡΡ‚ΡŒ 2. ΠžΠ±Ρ‰Π°Ρ характСристика фосфатаз 1,3-ДифосфоглицСрата
  • ΠŸΠΎΠ»ΠΈΡΡƒΠ±ΡΡ‚Ρ€Π°Ρ‚Π½Π°Ρ ацилфосфатаза
  • Π€ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Π° фосфоглицСринового альдСгида, содСрТащая остаток ΡΡƒΠ»ΡŠΡ„Π΅Π½ΠΎΠ²ΠΎΠΉ кислоты Π² Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅
  • Π§Π°ΡΡ‚ΡŒ 3. Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ особСнности Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π· 3-ЀГА
  • ЀСррСдоксин-зависимыС Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΡˆΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ фосфоглицСринового альдСгида
  • NAD (P)-3aeucuMbie Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΡˆΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ фосфоглицСринового альдСгида: происхоТдСниС, распространСниС, структура ΠΈ Ρ„ункция
  • РСакция окислСния 3-ЀГА, катализируСмая GAPN, субстраты ΠΈ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° NAD (P)-3aBHCHMofi Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфат Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹
  • РаспространСниС ΠΈ ΠΏΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ЀГАдСгидрогСназы
  • ЀизиологичСская Ρ€ΠΎΠ»ΡŒ GAPN Ρƒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ²
  • ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ строСния Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π° NADP-зависимой Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ 3фосфоглицСринового альдСгида ΠΈΠ· Streptococcus mutans
  • Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π° Π°ΠΏΠΎ- ΠΈ Ρ…ΠΎΠ»ΠΎ-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ кристаллографичСских исслСдований
  • ВлияниС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° Π½Π° ΠΊΠ°Ρ‚алитичСскиС свойства GAPN S. mutans
  • ГипотСтичСская схСма ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°, осущСствляСмого GAPN S. mutans
  • Π­ΠšΠ‘ΠŸΠ•Π Π˜ΠœΠ•ΠΠ’ΠΠ›Π¬ΠΠΠ― ЧАБВ
  • ΠœΠΠ’Π•Π Π˜ΠΠ›Π« И ΠœΠ•Π’ΠžΠ”Π«
  • Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ GAPN Streptococcus mutans
  • ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ цитоплазматичСской Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ· ΠΌΡ‹ΡˆΡ† крысы
  • АналитичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π΅Π°Π³Π΅Π½Ρ‚ΠΎΠ²
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Π±Π΅Π»ΠΊΠΎΠ²
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π»Π°ΠΊΡ‚Π°Ρ‚Π° Π² ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΌ экстрактС
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности ГАЀД ΠΈ GAPN
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ фосфата Π² ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°Ρ… GAPN
  • ΠœΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ГАЀД ΠΈ GAPN, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ
  • ДВНБ
  • Π˜Π½Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡ ГАЀД ΠΈ GAPN Ρ€Π΅Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ Π½Π° ΡΡƒΠ»ΡŒΡ„Π³ΠΈΠ΄Ρ€ΠΈΠ»ΡŒΠ½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹
  • Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΡ„ΠΎΡ€Π΅Π· Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΏΠΎΠ»ΠΈΠ°ΠΊΡ€ΠΈΠ»Π°ΠΌΠΈΠ΄Π½ΠΎΠΌ Π³Π΅Π»Π΅
  • Π”ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Π°Ρ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ калоримСтрия
  • РСгистрация спСктров ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΡ…Ρ€ΠΎΠΈΠ·ΠΌΠ°
  • РЕЗУЛЬВАВЫ И ΠžΠ‘Π‘Π£Π–Π”Π•ΠΠ˜Π•
  • Π§Π°ΡΡ‚ΡŒ 1. Π˜Π½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°Π½ΠΈΠΎΠ½Π°ΠΌΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈ Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфат Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹
  • ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌ Π°ΠΏΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΡΠ»Π΅ΠΊΡ‚рофорСтичСской подвиТности. 74 ВлияниС рН ΡΡ€Π΅Π΄Ρ‹ Π½Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Ρ‚Π΅Ρ€ΠΌΠΎΠ³Ρ€Π°ΠΌΠΌ Π°ΠΏΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° GAPN Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°
  • Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ участок связывания Π°Π½ΠΈΠΎΠ½Π° с ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΎΠΉ GAPN
  • Бвойства ano-GAPN Π² Π³Π»ΠΈΡ†ΠΈΠ½ΠΎΠ²ΠΎΠΌ Π±ΡƒΡ„Π΅Ρ€Π΅
  • НСзависимая тСрмодСнатурация Ρ„ΠΎΡ€ΠΌΡ‹ Π’
  • ВлияниС фосфата Π½Π° Π΄ΠΎΡΡ‚ΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ остатков цистСина GAPN ΠΊ Ρ…имичСской ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ

ВлияниС нСорганичСского фосфата ΠΈ ΠΊΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназы (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠΠ΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназа (КЀ 1.2.1.9) (GAPN) ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅Ρ‚ Π½Π΅ΠΎΠ±Ρ€Π°Ρ‚ΠΈΠΌΡƒΡŽ Ρ€Π΅Π°ΠΊΡ†ΠΈΡŽ окислСния Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфата Π² 3-фосфоглицСрат с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ восстановлСниСм NAD (P): 3-ЀГА + NAD (P)+ + Н20 3-Π€Π“ + NAD (P)H + 2? t. Π­Ρ‚ΠΎΡ‚ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ Π½Π°ΠΉΠ΄Π΅Π½ Π²ΠΎ Π²ΡΠ΅Ρ… Π²Ρ‹ΡΡˆΠΈΡ… растСниях, водорослях ΠΈ Ρ€ΡΠ΄Π΅ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². GAPN являСтся Ρ‡Π»Π΅Π½ΠΎΠΌ большого супСрсСмСйства Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π· ΠΈ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π³ΠΎΠΌΠΎΠ»ΠΎΠ³ΠΈΠΈ с Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназой (ГАЀД). ΠΠ»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ ΠΈΠ³Ρ€Π°ΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² Ρ‚Π°ΠΊΠΈΡ… процСссах, ΠΊΠ°ΠΊ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·, дСтоксикация ксСнобиотиков, рост ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ° ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (Lindahl, 1992; Yoshida et al., 1998; Vasiliou et al., 2000). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, выяснСниС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹, рСгуляции ΠΈ ΠΌΠ΅Ρ‚аболичСской Ρ€ΠΎΠ»ΠΈ этой Π³Ρ€ΡƒΠΏΠΏΡ‹ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΎΠ² Π²Π°ΠΆΠ½ΠΎ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ энзимологии, Π½ΠΎ ΠΈ Π΄Π»Ρ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Ρ‹. NADP-зависимая GAPN ΠΈΠ· Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Streptococcus mutans являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ исслСдованных Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π· (Habenicht, 1997; Marchal et al., 2001). Π­Ρ‚ΠΎΡ‚ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ строгой субстратной ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΈ Π΅Π³ΠΎ физиологичСскиС субстраты Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстныэто NADP ΠΈ 3-ЀГА. МногиС Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ способны ΠΎΠΊΠΈΡΠ»ΡΡ‚ΡŒ Ρ†Π΅Π»Ρ‹ΠΉ ряд альдСгидов, ΠΏΡ€ΠΈ этом ΠΈΡ… Ρ„изиологичСскиС субстраты ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ нСизвСстными. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, GAPN S. mutans прСдставляСт собой вСсьма ΠΏΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ модСль для изучСния Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ окислСния альдСгидов.

Π”Ρ€ΡƒΠ³ΠΎΠΉ аспСкт, ΠΏΡ€ΠΈΠ΄Π°ΡŽΡ‰ΠΈΠΉ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ GAPN ΠΎΡΠΎΠ±ΡƒΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡΡ‚ΠΎ Ρ€ΠΎΠ»ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π°. НаличиС систСмы окислСния фосфоглицСринового альдСгида с Π³ΠΈΠ΄Ρ€ΠΎ-, Π° Π½Π΅ Ρ„осфоролитичСским расщСплСниСм Π°Ρ†ΠΈΠ»-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π½ΠΎΠ³ΠΎ ΠΈΠ½Ρ‚Π΅Ρ€ΠΌΠ΅Π΄ΠΈΠ°Ρ‚Π° ΠΌΠΎΠ³Π»ΠΎ Π±Ρ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π½ΠΈΡŽ Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π°, Π΄Π°ΠΆΠ΅ ΠΏΡ€ΠΈ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π΅ ADP ΠΈ Pi Π² Ρ†ΠΈΡ‚ΠΎΠΏΠ»Π°Π·ΠΌΠ΅. Когда рСакция, катализируСмая ГАЀД, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΈΠ·-Π·Π° нСдостатка ADP ΠΈ/ΠΈΠ»ΠΈ Pi, Ρ‚ΠΎ ΠΏΠΎΡ‚ΠΎΠΊ субстратов ΠΌΠΎΠ³ Π±Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒΡΡ ΠΏΠΎ ΡˆΡƒΠ½Ρ‚Ρƒ с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ GAPN ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ фосфоглицСриновой кислоты, минуя фосфоглицСраткиназу.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ Π²Ρ‹ΡˆΠ΅, Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€Π΅ΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈΡΡŒ Π΄Π²Π΅ Ρ†Π΅Π»ΠΈ:

ИсслСдованиС влияния низкомолСкулярных Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² Π½Π° Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ свойства Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°;

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназы Π½Π° ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π½ΠΈΠ΅ Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π° Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ систСмС.

Π’ ΡΠΎΠΎΡ‚вСтствии с Ρ†Π΅Π»ΡΠΌΠΈ Π±Ρ‹Π»ΠΈ сформулированы Π·Π°Π΄Π°Ρ‡ΠΈ:

1. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ воздСйствиС нСорганичСского фосфата (ΠΊΠ°ΠΊ Π°Π½Π°Π»ΠΎΠ³Π° субстрата) Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π°ΠΏΠΎ-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназы S. mutans;

2. Π’Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈ связывании ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π° с ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΠΎΠΉ Π°ΠΏΠΎ-Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°;

3. ΠžΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΌΠΎΠ³ΡƒΡ‚ Π»ΠΈ Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ измСнСния Π±Ρ‹Ρ‚ΡŒ ΠΎΠ±Ρ‰ΠΈΠΌΠΈ для Π΄Ρ€ΡƒΠ³ΠΈΡ… Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·;

4. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ускорСния Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π° ΠΏΡ€ΠΈ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π΅ ADP, Ссли Π² ΡΠΈΡΡ‚Π΅ΠΌΡƒ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Π° GAPN.

ΠžΠ‘Π—ΠžΠ  Π›Π˜Π’Π•Π ΠΠ’Π£Π Π«.

Π²Ρ‹Π²ΠΎΠ΄Ρ‹.

1. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ сущСствованиС Π² Ρ€Π°ΡΡ‚Π²ΠΎΡ€Π΅ Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌ Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3 -фосфатдСгидрогСназы, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΠΏΠΎ ΡΠ»Π΅ΠΊΡ‚рофорСтичСской подвиТности. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Ρ„ΠΎΡ€ΠΌ зависит ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π°Π½ΠΈΠΎΠ½ΠΎΠ² Π² ΡΡ€Π΅Π΄Π΅.

2. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ связывании Π°Π½ΠΈΠΎΠ½ΠΎΠ² Π² Ρ†Π΅Π½Ρ‚Ρ€Π΅ связывания субстрата Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3 -фосфатдСгидрогСназы Ρ‚Π΅Ρ€ΠΌΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° сниТаСтся, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ эффСкт Π»ΠΈΠ³Π°Π½Π΄Π° возрастаСт Π² Ρ€ΡΠ΄Ρƒ Ρ†Π²ΠΈΡ‚Ρ‚Π΅Ρ€-ΠΈΠΎΠ½ Π³Π»ΠΈΡ†ΠΈΠ½Π°<οΏ½Ρ…Π»ΠΎΡ€ΠΈΠ΄<οΏ½Π°Ρ†Π΅Ρ‚Π°Ρ‚<οΏ½ΡΡƒΠ»ΡŒΡ„Π°Ρ‚<�фосфат.

3. Показано, Ρ‡Ρ‚ΠΎ NADP стабилизируСт Π»Π°Π±ΠΈΠ»ΡŒΠ½ΡƒΡŽ фосфат-ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, Π° Ρƒ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ ΠΊΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚, Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ², сниТаСт Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ максимального тСплопоглощСния.

4. Показано, Ρ‡Ρ‚ΠΎ тСрмоинактивация Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° замСдляСтся ΠΊΠ°ΠΊ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии ΠΊΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π°, Ρ‚Π°ΠΊ ΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии фосфата, нСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ…ΠΎΠ»ΠΎΡ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΠΈΠ»ΠΈ Π² ΠΏΡ€ΠΈΡΡƒΡ‚ствии высокой ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ фосфата Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° максимального тСплопоглощСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Ρ€Π΅Π·ΠΊΠΎ сниТаСтся.

5. Показано, Ρ‡Ρ‚ΠΎ Π½ΠΈ NAD, Π½ΠΈ NADP Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ Ρ‚Π΅Ρ€ΠΌΠΎΠ΄Π΅ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ эффСктом ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŽ супСрсСмСйства Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ€Π΅Ρ‚ΠΈΠ½Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Π΅.

6. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ускорСниС Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π° ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ Π½Π΅Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфатдСгидрогСназы Π² ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½ΡƒΡŽ систСму, Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π½ΡƒΡŽ ΠΏΠΎ ADP ΠΈ Π² ΡΠΈΡΡ‚Π΅ΠΌΡƒ, Π³Π΄Π΅ вмСсто ADP присутствуСт АВР.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Π’.И., Π€ΠΎΠΊΠΈΠ½Π° К. Π’., Π¨ΠΌΠ°Π»ΡŒΠ³Π°ΡƒΠ·Π΅Π½ Π•. Π’. (1999) Роль Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфат Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹ Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ Π³Π»ΠΈΠΊΠΎΠ»ΠΈΠ·Π°. УспСхи Π±ΠΈΠΎΠ». Ρ…ΠΈΠΌΠΈΠΈ XXXIX: 77−103
  2. Н.К. (2001) Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ D-Π³Π»ΠΈΡ†Π΅Ρ€Π°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄-3-фосфат Π΄Π΅Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π°Π·Ρ‹. Биохимия 66(10): 13 231 335
  3. Π¦ΠΎΡƒ Π§.-Π›. (1998) Роль гибкости Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° Π² Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌ ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π΅. Биохимия 63(3): 300−307
  4. Allison W.S., and Connors M.J. (1970) The activation and inactivation of the acyl phosphatase activity of glyceraldehyde-3-phosphate dehydrogenase. Arch. Biochem. Biophys. 136: 383−391
  5. D.I., Rosenberg L.L., Whatley F.R. (1954) A new glycerol dehyde-3-phospate dehydrogenase from photosynthetic tissues. Nature 173: 11 321 134
  6. Bamberger E.S., Ehrlich B.A. and Gibbs M. (1975) The glyceraldehyde-3-phosphate and glycerate-3-phosphate shuttle and carbon dioxide assimilation in intact spinach chloroplasts. Plant Physiol 55: 1023−1030
  7. D.A., Cvitkovitch D.G., Hamilton I.R. (1995) Sequence, expression and function of the gene for the non-phosphorylating, NADP-dependent glyceraldehyde-3-phospate dehydrogenase of Streptococcus mutans. J. Bacteriol. 177 (10): 2622−2627
  8. A.T., Wittenberger C.L. (1971) The occurrence of multiple glyceraldehydes-3-phosphate dehydrogenases in cariogenic streptococci. Biochem. Biophys. Research Communications 43(1): 217−224
  9. Casati D.F.G., Sesma J.I., Iglesias A.A. (2000) Structural and kinetic characterization of NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. Plant Science 154: 107−115
  10. Chiarugi P., Degl’Innocenti D., Raugei G., Fiaschi Π’., Ramponi G. (1997) Differential migration of acylphosphatase isoenzymes from cytoplasm to nucleus during apoptotic cell death. Biochem. Biophys. Res. Commun. 231(3): 717−21
  11. Chiarugi P., Raugei G., Marzocchini R., Fiaschi Π’., Ciccarelli C., Berti A. et al. (1995) Differential modulation of expression of the two acylphosphatase isoenzymes by thyroid hormone. Biochem. J. 311: 567 573
  12. F., Taddei N., Stefani M., Dobson C.M., Ramponi G. (2001) Reduction of the amyloidogenicity of a protein by specific binding of ligands to the native conformation. Protein Sci. 10(4): 879−86
  13. F., Webster P., Taddei N., Clark A., Stefani M., Ramponi G., Dobson C.M. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Nat. Acad. Sci. USA 96(7): 3590−4
  14. Cobessi, D., Tete Favier, F., Marchal, S., Azza, S., Branlant, G., Aubry, A. (1999) Apo and holo crystal structures of a NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. J. Mol. Biol. 290: 161−173
  15. Cobessi, D., Tete Favier, F., Marchal, S., Branlant, G., Aubry, A. (2000) Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. J. Mol. Biol. 300: 141−152
  16. E.B., Birrell G.B., Griffith O.H. (1999) A robotics-based automatic assays for inorganic and organic phosphates. Anal. Biochem. 271(1): 29−35
  17. V.L., Wittenberger Π‘. L. (1979) Separation and properties of NAD-and NADP-dependent glyceraldehydes-3-phosphate dehydrogenases from Streptococcus mutans. J. Biol. Chem. 254: 1134−1142
  18. D’Amico S., Gerday C., and Feller G. (2001) Structural determinants of cold adaptation and stability in a large protein. J. Biol. Chem. 276(28): 25 791−25 796
  19. G., Damaschun H., Gast K., Zirwer D. (1999) Proteins can adopt totally different folded conformations. J. Mol. Biol. 291: 715−725
  20. J., Wang T.T., Cunningham S.J., Weiner H. (1995) Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis. Biochemistry 34(8): 2592−8
  21. Farres J., Wang T.T.Y., Cunningam S.J., Weiner H. (1995) Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site directed mutagenesis. Biochemistry 34: 2592−2598
  22. L.R., Bruice T.C. (1964) Nucleophilic displacement reactions at the thiolester bond. II. Hydrazinolysis and morpholinolysis in aqueous solutions. J. Am. Chem. Soc. 86: 4117−4123
  23. V.A., Cavanagh J. (1999) Millisecond-timescale motions contribute to the function of the bacterial response regulator protein SpoOF. Nature 400(6741): 289−93
  24. Forman-Kay J.D. (1999) The «dynamics» in the thermodynamics of binding. Nature Struct. Biol. 6(12): 1086−7
  25. Gerday C., Aittaleb M., Arpigny J.L., Baise E., Chessa J-P., Garsoux G., Petrescu I., Feller G. (1997) Psychrophilic enzymes: a thermodynamic challenge. Biochim. Biophys. Acta 1342: 119−131
  26. E., Cirri P., Paoli P., Fischi Π’., Camici G., Manao G., Raugei G., Ramponi G. (2000) Acylphosphatase is a strong apoptosis inducer in HeLa cell line. Moll. Cell. Biol. Res. Commun. 3(5): 264−70
  27. A., Hellman U., Cerff R. (1994) Non-phosphorylating GAPDH of higher plants is a member of the aldehyde dehydrogenase superfamily with no sequence homology to phosphorylating GAPDH. J. Mol. Biol. 237(1): 165−71
  28. A. (1997) The non-phosphorylating glyceraldehyde-3-phospate dehydrogenase: biochemistry, structure, occurence and evolution. Biological chemistry 378: 1413−1419
  29. A., Quesada A., Cerff R. (1997) Sequence of the non-phosphorylating glyceraldehyde-3-phospate dehydrogenase from Nicotiana plumbaginifolia and phylogenetic origin of the family. Gene 198(1−2): 237−243
  30. Hammen P.K., Allali-Hassani A., Hallenga K., Hurley T.D., Weiner H. (2002) Multiple conformations of NAD and NADH when bound to human cytosolic and mitochondrial aldehyde dehydrogenase. Biochemistry 41(22): 7156−68
  31. I. (1957) The hydrolysis of 1,3-diphosphoglyceric acid by acylphosphatase. Biochim. Biophys. Acta 26: 434−436
  32. Hempel J., Perozich J., Chapman Π’., Rose J., Boesch J.S., Liu Z.J., Lindahl R., Wang B.C. (1999) Aldehyde dehydrogenase catalytic mechanism. A proposal. Adv. Exp. Med. Biol. 463: 53−9
  33. Hensel R., Laumann S., Lang J., Heumann H., and Lottspeich F. (1987) Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur. J. Biochem. 170: 325−333
  34. Hokin L.E., Sastry P. S., Galsworthy P.R. and Yoda A. (1965) Evidence that a phosphorylated intermediate in a brain transport adenosine triphosphatase is an acylphosphate. Proc. Natl. Acad. Sci. USA 54: 177— 184
  35. Hu Y., Faham S., Roy R., Adams M.W.W. and Rees D.C. (1999) Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 A resolution crystal structure and its mechanistic implications. J. Mol. Biol. 286: 899−914
  36. T.D., Steinmetz C.G., Weiner H. (1999) Three-dimensional structure of mitochondrial aldehyde dehydrogenase. Mechanistic implications. Adv. Exp. Med. Biol. 463: 15−25
  37. T.D., Weiner H. (1999) Evaluation of the roles of the conserved residues of aldehyde dehydrogenase. Adv. Exp. Med. Biol. 463: 45−52
  38. Iglesias A. A, Losada M. (1988) Purification and kinetic and structural properties of spinach leaf NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase. Arch. Biochem. Biophys. 260(2): 830−40
  39. Iglesias A.A., Serrano A., Guerrero M.G. and Losada M. (1987) Purification and properties of NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the green alga Chlamydomonas reinhardtii. Biochim. Biophys. Acta 925: 1−10
  40. Johansson K., El-Ahmad M., Ramaswamy S., Hjelmqvist L., Jornvall H., Eklund H. (1998) Structure of betaine aldehyde dehydrogenase at 2.1A resolution. Protein Sci. 7: 2106−2117
  41. Kelly G.J. and Gibbs M. (1973a) Nonreversible D-glyceraldehyde-3-phosphate dehydrogenase of plant tissue. Plant Physiol. 52: 111−118
  42. Kelly G.J. and Gibbs M. (1973b) A mechanism of the indirect transfer of photosynthetically reduced nicotinamide adenine dinucleotide phosphate from the chloroplast to the cytoplasm. Plant Physiol. 52: 674−676
  43. Kengen S.W.M., de Vos W.M., Stams A.J.M. (1996) Sugar metabolism ofhyperthermophiles. FEMS Microbiology reviews 18: 119−137
  44. Kengen S.W., Tuininga J.E., de Bok F.A., Stams A.J., de Vos W.M. (1995) Purification and characterization of a novel ADP-dependent glucokinase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270(51): 30 453−7
  45. N.A., Muronetz V.I., Nagradova N.K. (1992) Interaction between D-glyceraldehyde-3-phosphate dehydrogenase and 3phosphoglycerate kinase and its functional consequences. FEBS Lett. 297(3): 247−9
  46. Kitson T.M. and Kitson K.E. (1996) A comparison of nitrophenyl esters and lactones as substrates of cytosolic aldehyde dehydrogenase. Biochem. J. 316: 225−232
  47. Kitson T.M. and Kitson K.E. (1997) Studies of the esterase activity of cytosolic aldehyde dehydrogenase with resorufm acetate as substrate Biochem. J. 322: 701−708
  48. E.V., Asryants R.A., Nagradova N.K. (1991) Rabbit muscle tetrameric D-glyceraldehyde-3-phosphate dehydrogenase is locked in the asymmetric state by chemical modification of a single arginine per subunit. Biochim. Biophys. Acta 1075: 123−130
  49. U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680−685
  50. A.L., Newcomer M.E. (1999) The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity. Biochemistry 38(19): 6003−11
  51. Liguri G., Cecchi C., Latorraca S., Pieri A., Sorbi S., Degl’In-nocenti D. et al. (1996) Alteration of acylphosphatase levels in familial Alzheimer’sdisease fibroblasts with presenilin gene mutations. Neurosci. Lett. 210: 153−156
  52. R. (1992) Aldehyde dehydrogenases and their role in carcinogenesis. Crit. Rev. Biochem. Mol. Biol. 27(4−5): 283−335
  53. F. (1946) Acetylphosphate. Adv. Enzymol. 6: 231−267
  54. Loh A.P., Guo W., Nicholson L.K., Oswald R.E. (1999) Backbone dynamics of inactive, active, and effector-bound Cdc42Hs from measurements of (15)N relaxation parameters at multiple field strengths. Biochemistry 38(39): 12 547−57
  55. Loh A.P., Pawley N., Nicholson L.K., Oswald R.E. (2001) An increase in side chain entropy facilitates effector binding: NMR characterization of the side chain methyl group dynamics in Cdc42Hs. Biochemistry 40(15): 4590−600.
  56. Π’., Gerday C., Feller G. (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543: 1−10
  57. C.J., Weiner H. (1999) Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases. Protein Sci. 8(10): 1922−9
  58. Mann K. and Mecke D. (1979) Inhibition of spinach glyceraldehyde-3-phosphate dehydrogenases by pentalenolactone. Nature 282: 535−536
  59. C.J., Weiner H. (1999) Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenase. Protein Sci. 8: 1922−1929
  60. Marchal S., Cobessi D., Rahuel-Clermont S., Tete-Favier F., Aubry A., Branlant G. (2001) Chemical mechanism and substrate binding sites of NADP-dependent aldehyde dehydrogenase from Streptococcus mutans. Chemico-Biological Interactions 130−132: 15−28
  61. Marchal S. and Branlant G. (2001) Engineered nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase at position 268 binds hydroxylamine and hydrazine as acyl acceptors. Eur. J. Biochem. 268: 5764−5770
  62. Marchal S. and Branlant G. (2002) Characterization of the amino acids involved in substrate specificity of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. J. Biol. Chem. 277(42): 39 235−42
  63. S., Branlant G. (1999) Evidence for the chemical activation of essential Cys-302 upon cofactor binding to nonphosphorylating glyceraldehyde 3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry 38: 12 950−12 958
  64. Marchal S., Rahuel-Clermont S., Branlant G., (2000) The role of Glu268 in the catalytic mechanism of non-phosphorylating glyceraldehyde dehydrogenase from Streptococcus mutans. Biochemistry 39: 3327−3335
  65. Mateos M.I. and Serrano A. (1992) Occurense of phosphorylating and non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenases in photosynthetic organisms. Plant Science 84: 163−170
  66. M.I., Serrano A. (1992) Occurence of phosphorylating and nonphosphorylating NADP-dependent glyceraldehyde-3-phospate dehydrogenases in photosynthetic organisms. Plant Science 84: 163−170
  67. O. (1994 1948.) New investigations on enzymatic glycolysis and phosphorylation. Experientia 50: 382−389
  68. Michels S., Scagliarini S., Delia Seta F., Carles C., Riva M., Trost P., Branlant G. (1994) Arguments against a close relationship between nonphosphorylating and phosphorylating glyceraldehyde-3-phosphate dehydrogenases. FEBS Lett. 339(1−2): 97−100
  69. S.A., Baker H.M., Blythe T.J., Kitson K.E., Kitson T.M., Baker E.N. (1998) Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure 6(12): 1541−51
  70. S.A., Baker H.M., Blythe T.J., Kitson K.E., Kitson T.M., Baker E.N. (1998) Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure 6: 1541−1551
  71. Mukund S., and Adams M.W.W. (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon, Pyrococcus furiosus. J. Biol. Chem. 270: 8389−8392
  72. V.I., Wang Z.X., Keith T.J., Knull H.R., Srivastava D.K. (1994) Binding constants and stoichiometrics of glyceraldehyde 3-phosphate dehydrogenase-tubulin complexes. Arch. Biochem. Biophys. 313(2): 253−60
  73. Nakano M.M., Zhu Y., Haga K., Yoshikawa H., Sonenshein A.L. and Zuber P. (1999) A mutation in the 3-phosphoglycerate kinase gene allows anaerobic growth of Bacillus subtilis in the absence of ResE kinase. J. Bacterid. 181(22): 7087−7097
  74. Nassi P., Liguri G., Landi N., Berti A., Stefani M., Pavolini B. et al. (1985) Acylphosphatase from human skeletal muscle: purification, some properties and levels in normal and my-opathic muscles. Biochem. Med. 34:166−175
  75. Nassi P., Liguri G., Nediani C., Taddei N., Piccinni P., Degl’Innocenti D. et al. (1989) Increased acylphosphatase levels in erythrocytes from hyperthyroid patients. Clin. Chim. Acta 183: 351−358
  76. Nassi P., Marchetti E., Nediani C., Liguri G. and Ramponi G. (1993) Acylphosphatase induced modifications in the fimc-tional properties of erythrocyte membrane sodium pump. Biochim. Biophys. Acta 1147: 1926
  77. Nassi P., Nediani C., Fiorillo C., Marchetti E., Liguri G. And Ramponi G. (1994) Modifications induced by acylphosphatase in the functional properties of heart sarcolemma Na К + pump. FEBS Lett. 337: 109−113
  78. Nassi P., Nediani C., Liguri G., Taddei N. and Ramponi G. (1991) Effects of acylphosphatase on the activity of erythro-cyte membrane Ca2+ pump. J. Biol. Chem. 266: 10 867−10 871
  79. Nediani C., Fiorillo C., Marchetti E., Pacini A., Liguri G. and Nassi P. (1996) Stimulation of cardiac sarcoplasmic reticulum calcium pump by acylphosphatase. J. Biol. Chem. 271: 19 066−19 073
  80. Ni L., Sheikh S., Weiner H. (1997) Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase. J. Biol. Chem. 272(30): 18 823−6
  81. M., Shoubridge E.A. (1992) Phosphocreatine-dependent protein phosphorylation in rat skeletal muscle. Biochem. J. 284 (Pt 1): 115−22
  82. P., Camici G., Manao G., Giannoni E., Ramponi G. (2000) Acylphosphatase possesses nucleoside triphosphatase and nucleoside diphosphatase activities. Biochem. J. 349 (Ptl): 43−9
  83. Parker D.J., and Allison W.S. (1969) The mechanism of inactivation of glyceraldehyde 3-phosphate dehydrogenase by tetrathionate, o-iodozobenzoate, and iodine monochloride. J. Biol. Chem. 244: 180−189
  84. Pastore A., Saudek V., Ramponi G. and Williams R.J.P. (1992) Three-dimensional structure of acylphosphatase. Refinement and structure analysis. J. Mol. Biol. 224: 427−440
  85. Π Π΅ΠΊ S.B., Usami M., Bilir N., Fischer-Bovenkerk C., Ueda T. (1990) Protein phosphorylation in pancreatic islets induced by 3-phosphoglycerate and 2-phosphoglycerate. Proc. Natl. Acad. Sci. USA 87(11): 4294−8
  86. E., Brunner N., Wilmanns M., Hensel R. (2002) The crystal structure of the allosteric non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeum Thermoproteus tenax. J. Biol. Chem. 277(22): 19 938−45
  87. G., Liguri G., Nediani C., Stefani M., Taddei N., Nassi P. (1988) Acylphosphatase increases the rate of ethanol production from glucose in cell-free extracts of Saccharomyces cerevisiae. Biotechnol. Appl. Biochem. 10(5): 408−13
  88. G. (1975) 1,3-diphosphoglycerate phosphatase. Methods Enzymol. 42: 409−426
  89. Raugei, G., Modesti, A., Magherini, F., Marzocchini, R., Vecchi, M., and Ramponi, G. (1996) Expression of acylphosphatase in Saccharomyces cerevisiae enhances ethanol fermentation rate. Biotechnol. Appl. Biochem. 23: 273−278
  90. Ravichandran V., Seres Π’., Moriguchi Π’., Thomas J.A., and Johnston R.B., Jr. (1994) S-Thiolation of glyceraldehyde-3-phosphate dehydrogenase induced by the phagocytosis-associated respiratory burst in blood monocytes. J. Biol. Chem. 269: 25 010−25 015
  91. L.L., Arnon D.I. (1955) The preparation and properties of a new glyceraldehyde-3-phospate dehydrogenase from photosynthetic tissues. J. Biol. Chem. 217: 361−371
  92. Saudek V., Atkinson R.A., Williams R.J.P. and Ramponi G. (1989) Identification and description of a-helical regions in horse muscle acylphosphatase by .H nuclear magnetic reso-nance spectroscopy. J. Mol. Biol. 205: 229−239
  93. Saudek V., Williams R.J.P. and Ramponi G. (1988) Secondary structure of acylphosphatase from rabbit skeletal muscle. A nuclear magnetic resonance study. J. Mol. Biol. 199: 233−237
  94. Saudek V., Wormald M.R., Williams R.J.P., Boyd J., Stefani M. and Ramponi G. (1989) Identification and description of (3-structure in horse muscle acylphosphatase by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 207: 405−415
  95. S., Trost P., Valenti V., Pupillo P. (1990) Glyceraldehyde-3-phosphate: NADP+ reductase of spinach leaves. Plant Physiol. 94: 1337−1344
  96. E.V., Muronetz V.I., Nagradova N.K. (1997) Rabbit muscle GAPDH: non-phosphorylating dehydrogenase activity induced by hydrogen peroxide. FEBS Lett. 414(2): 247−52
  97. Schmalhausen E.V., and Muronetz V.I. (1997) An uncoupling of the processes of oxidation and phosphorylation in glycolysis. Biosci. Rep. 17: 521−527
  98. Schmalhausen E.V., Nagradova N.K., Boschi-Muller S., Branlant G., and Muronetz V.I. (1999) Mildly oxidized GAPDH: the coupling of the dehydrogenase and acyl phosphatase activities. FEBS Lett. 452: 219−222
  99. Schuppe-Koistinen I., Moldeus P., Bergman Π’., and Cotgreave I.A. (1994) S-Thiolation of human endothelial cell glyceraldehyde-3 -phosphate dehydrogenase after hydrogen peroxide treatment. Eur. J Biochem. 221: 1033−1037
  100. Schweins Π’., Geyer M., Scheffzek K., Warshel A., Kalbitzer H. R. and Wittinghofer A. (1995) Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21 ras and other GTP-binding proteins. Nature Struct. Biol. 2: 36−44
  101. Schweins Π’., Langen R. and Warshel A. (1994) Why have mutagenesis studies not located the general base in ras p21? Nature Struct. Biol. 1: 476−484
  102. Scopes R.K., and Stoter A. (1982) Purification of all glycolytic enzymes from one muscle extract. Methods in Enzymology 90: 479−491
  103. J.C., Geiger D.R., Tucci M.A., Fondy D.R. (1989) Leaf carbon metabolism and metabolite levels during a period of sinusoidal light. Plant Physiol 89: 403−408
  104. Sheikh S., Ni L., Hurley T.D., Weiner H. (1997) The potential roles of the conserved amino acids in human liver mitochondrial aldehyde dehydrogenase. J. Biol. Chem. 272(30): 18 817−22
  105. Sheikh S, Ni L., Weiner H. (1997) Mutation of the conserved amino acids of mitochondria aldehyde dehydrogenase. Role of the conserved residues in the mechanism of reaction. Adv. Exp. Med. Biol. 414:195−200
  106. Π’., Klenk H.P., Hensel R. (1998) PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J. Bacterid. 180(8): 2137−43
  107. M., Friedrich P. (1979) The «enzyme-probe» method for characterizating metabolite pools. The use of NAD-glycohydrolase in human erythrocyte sonicate as a model system. Eur. J. Biochem. 95: 551 559
  108. N.A., Pappa A., Ziegler T.L., Yasiliou V. (2001) Aldehyde dehydrogenase gene superfamily: the 2000 update. Chemico-Biological Interactions 130−132: 323−337
  109. Stefani M. and Ramponi G. (1995) Acylphosphate phospho-hydrolases. Life Chem. Rep. 12: 271−301
  110. Stefani M., Taddei N. and Ramponi G. (1997) Insights into acylphosphatase structure and catalytic mechanism. Cell. Mol. Life Sci. 53:141−151
  111. Steinmetz C.G., Xie P., Weiner H., Hurley T.D. (1997) Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure 5(5): 701−11
  112. Steinmetz C.G., Xie P., Weiner H., Hurley D.T. (1997) Structure of mitochondrial aldehyde dehydroge-nase: the genetic component of ethanol aversion. Structure 5: 701−711
  113. A. (1999) Biophysics. Relating dynamics to function. Nature 400(6741): 221−2
  114. K., Wolny H., Baranowsky T. (1961) Nova metoda otrzyzmywania D-glyceraldehydo-fosforany. Acta Bioch. Polon. 8: 201 209
  115. Taddei N., Stefani M., Magherini F., Chiti F., Modesti A., Raugei G. et al. (1996) Looking for residues involved in the muscle acylphosphatase catalytic mechanism and structural stabilization: role of Asn41, Thr42 and Thr46. Biochemistry 35: 7077−7083
  116. Thomas S.M. and Rees T. (1972) Glycolysis during gluconeogenesis in cotyledons of Cucurbita pepo. Phytochemistry 11: 2187−2194
  117. M.M., Taddei N., Liguri G., Ramponi G., Nordlund P. (1997) Crystal structure of common type acylphosphatase from bovine testis. Structure 5(1): 69−79
  118. E.J. (2002) Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by protein kinase CiJX and plays a role in microtubule dynamics in the early secretory pathway. J. Biol. Chem. 277(5): 33 343 341
  119. C.L. (1993) Conformational flexibility of enzyme active sites. Science. 262(5132): 380−1
  120. Π’., Plagens D.G. (1987) Phosphoglycerate-dependent protein phosphorylation. Proc. Natl. Acad. Sci. USA 84(5): 1229−33
  121. V., Scagliarini S., Pupillo P. (1986) The distribution of some NADP-linked dehydrogenases in photosynthetic tissues of maize leaves. J. Experimental Botany 37: 606−614
  122. V., Pappa A., Petersen D. R. (2000) Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chemico-Biological Interactions 129: 1−19
  123. M., Meighen E. (1997) Critical glutamic acid residues affecting the mechanism and nucleotide specificity of Vibrio harveyi aldehyde dehydrogenase. Eur. J. Biochem. 246(3): 698−704
  124. Verhees C.H., Tuininga J.E., Kengen S.W., Stams A.J., van der Oost J., de Vos W.M. (2001) ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea. J. Bacteriol. 183(24): 7145−53.
  125. X., Weiner H. (1995) Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry 34(1): 237−43
  126. X., Weiner H. (1995) Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry 34: 237−243
  127. Yoshida A., Rzhetsky A., Hsu C. and Chang C. (1998) Human aldehyde dehydrogenase gene family. Eur. J. Biochem. 251: 549−557
  128. L., Novotny M.V., Stone M.J. (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Struct. Biol. 6(12): 1118−211. Благодарности
  129. Π‘Π»Π°Π³ΠΎΠ΄Π°Ρ€ΡŽ свою сСмью ΠΈ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ супругу (Ρ‚Π°ΠΊΠΆΠ΅ сотрудницу ΠΎΡ‚Π΄Π΅Π»Π°) Π’ΠΈΡˆΠ½ΠΈΠ²Π΅Ρ†ΠΊΡƒΡŽ (ΠΡ€ΡƒΡ‚ΡŽΠ½ΠΎΠ²Ρƒ) Π•Π»Π΅Π½Ρƒ Π˜Π²Π°Π½ΠΎΠ²Π½Ρƒ Π·Π° ΠΏΠΎΡΡ‚оянноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΡŒ.
  130. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, я Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€ΡŽ сотрудников ΠΎΡ‚Π΄Π΅Π»Π° физичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ НИИ Π€Π₯Π‘ ΠΈΠΌ. Π‘СлозСрского ΠœΠ“Π£ ΠžΡ€Π»ΠΎΠ²Π° Π’. Н., ΠœΠΈΡ‡ΡƒΡ€ΠΈΠ½Ρƒ Π’. Н. ΠΈ ΠšΠΎΠΏΡ‹Π»ΠΎΠ²Π° Π‘. А. Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ экспСримСнтов ΠΏΠΎ ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΊΠ°Π»ΠΎΡ€ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.
  131. Бпасибо Ρ‚Π°ΠΊΠΆΠ΅ ΠšΡ€Π°ΠΌΠ°Ρ€ΠΎΠ²ΠΎΠΉ Π’. Π’. (Stockholm University, Sweden) Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠΈ ряда ΠΏΠΎΠ»Π½Ρ‹Ρ… тСкстов статСй.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ