ΠΠ΅ΡΠΎΠ΄Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ²
ΠΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΡ
Π ΠΏΠ΅ΡΠ²ΠΎΠΉ Π³Π»Π°Π²Π΅ Π΄ΠΈΡΡΠ΅ΡΡΠ°ΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΡ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌ. ΠΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΏΠ΅ΡΠ²ΠΎΠΉ Π³Π»Π°Π²Ρ ΠΎΠΏΠΈΡΠ°Π½Ρ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Ρ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠ΅ Π΄Π»Ρ ΠΏΠΎΠΈΡΠΊΠ° ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠ½ΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΉ Π°ΡΠΎΠΌΠ½ΡΡ ΠΈ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΡ ΠΊΠ»Π°ΡΡΠ΅ΡΠΎΠ². ΠΡΠΎΡΠ°Ρ Π³Π»Π°Π²Π° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π΄Π²ΡΡ Π°ΡΠΎΠΌΠ½ΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°Ρ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΠΎΠ²… Π§ΠΈΡΠ°ΡΡ Π΅ΡΡ >
- Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΡΠ΄Π΅ΡΠΆΠΊΠ°
- ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
- ΠΡΡΠ³ΠΈΠ΅ ΡΠ°Π±ΠΎΡΡ
- ΠΠΎΠΌΠΎΡΡ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈ
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
- ΠΠ»Π°Π²Π° I. ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ ΠΎΠ±Π·ΠΎΡ
- ΠΠΎΠ²Π΅ΡΡ Π½ΠΎΡΡΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ, ΡΠΏΠΎΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
- ΠΡΠΎΠΌΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΠ΅ΡΡ
- Π‘ΠΌΠ΅ΡΠ°Π½Π½ΡΠ΅ ΠΊΠ»Π°ΡΡΠ΅ΡΡ
- ΠΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΡΠ΅ ΠΊΠ»Π°ΡΡΠ΅ΡΡ Ρ Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΡΠΌΠΈ ΡΠ²ΡΠ·ΡΠΌΠΈ: HF ΠΈ Π
Π‘ΠΏΠΈΡΠΎΠΊ Π»ΠΈΡΠ΅ΡΠ°ΡΡΡΡ
- S. Marka, C. Parks Cheney, W. Wang, G. Liipke, J. Gilligan, Y. Yao, and N. H. Tolk «Nonlinear energy-selective nanoscale modifications of materials and dynamics in metals and semiconductors», Tech. Phys., 1999 V 44, pp. 1069−1072.
- J. J. Scherer, J. B. Paul, A. O’Keefe, R. J. Saykally, «Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams» Chem. Rev., 1997, 97, pp. 25−51
- A. A. Shvartsburg, M. F. Jarrold, «Solid Clusters above the Bulk Melting Point», Phys. Rev. Lett., 2000, V.85, pp. 2530−2532.
- M. R. Hoare, «Structure and dynamics of simple microclusters.» Adv. Chem. Phys., 1979, v 40, p 49−135.
- L. Yerlet, Phys. Rev, 1967, v. 159, p. 98.
- D.J. Wales, R.S. Berry, «Melting and freezing small argon clusters», J.Chem.Phys, 1990, v 92(7), p 4283−4295.
- T.L. Beck, J. Jellinek, R. S. Berry, «Rare gas clusters: Solids, liquids, slush and magic numbers», J. Chem. Phys, 1987, v 87(1), p 545−554.
- M.P. Allen, D.J. Tildesley, «Computer Simulation of Liquids», Clarendon Press, Oxford, 1987
- M. H. Kalos, «Energy of Boson Fluid with Lennard-Jones Potentials», Phys. Rev. A, 1970, v. l, p. 250−255.
- J. V. Lill, G. A. Parker, J. C. Light, Chem. Phys. Lett., 1982, v. 89, p. 483.
- J. O. Jung, R. B. Gerber, «Vibrational wave functions and energy levels of large anharmonic clusters: A vibrational SCF study of (Ar)u», J. Chem. Phys., 1996, v 105, pp. 10 682−10 690
- Vladimir E. Bondybey, Alice M. Smith, Jurgen Agreiter, «New Developments in Matrix Isolation Spectroscopy», Chem. Rev., 1996, v 96, pp. 2113−2134
- V. A. Apkarian, N. Schwentner, «Molecular Photodynamics in Rare Gas Solids», Chem. Rev, 1999, v. 99, pp. 1481−1510.
- U. Buck, F. Huisken, «Infrared Spectroscopy of Size-Selected Water and Methanol Clusters», Chem. Rev. 2000, vl00,pp. 3863−3890.
- F. Huisken, M. Kaloudis, A.A. Vigasin, «Vibrationalfrequency shifts caused by weak intermolecular interactions „, Chem. Phys. Lett, 1997, v. 269, pp. 235−243.
- Clusters of Atoms and Molecules, edited by H. Haberland, Springer, Berlin, 1994.
- R. A. Aziz, H. H. Chen, „An accurate intermolecular potential for argon“ J. Chem. Phys., 1977, v. 67, p. 5719.
- R. A. Aziz, M. J. Slaman, „The argon and krypton interatomic potentials revisited“. Mol. Phys. 1986, v 58, pp. 679−697.
- R. A. Aziz „A highly accurate interatomic potential for argon“ J. Chem. Phys., 1993, v 99, pp. 4518−4525
- D. J. Wales, J. P. K. Doye, „Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms“ J. Phys. Chem. A, 1997,101, 5111−5116,
- URL http://brian.ch.cam.ac.uk/~jon/structures/LJ.html
- F. Y. Naumkin, D. J. Wales, Mol. Phys., in press, URL http://brian.ch.cam.ac.uk/~wales/ CCD/AzizAr.html
- A. Rytkonen, S. Valkealahti, M. Manninen, „Phase diagram of argon clusters“, J. Chem. Phys., 1998, v 108, pp. 5826−5833.
- E. Ruhl, C. Heinzel, A. P. Hitchcock, H. Baumgartel, „Ar 2p spectroscopy of free argon clusters“, J. Chem. Phys., 1993, v. 98, pp. 2653−2663.
- A. Knop, D. N. Mcllroy, P. A. Dowben, E. Ruhl „Auger electron spectroscopy of free argon clusters “, AIP Conference Proceedings, 1996, v 362, pp. 274−280.
- J. Farges, M. F. de Feraudy, B. Raoult, G. Torchet, „Noncrystalline structure of argon clusters. I. Polyicosahedral structure of Atn clusters, 20<50“, J. Chem. Phys., 1983, v 78, p. 5067
- J. Farges, M. F. de Feraudy, B. Raoult, G. Torchet „Noncrystalline structure of argon clusters. II. Multilayer icosahedral structure of Ar# clusters 50 < N < 750“ J. Chem. Phys., 1986, v 84, pp. 3491−3501
- Benjamin W. van de Waal, „Icosahedral, decahedral, fee, and defect-fcc structural models for ArN clusters, N>500: How plausible are they?“, J. Chem. Phys., 1993, v. 98, pp. 4909−4919
- U. Buck, R. Krohne, P. Lohbrandt, „Surface vibrations of argon clusters by helium atom scattering“, J. Chem. Phys, 1997, v 106, pp. 3205−3215.
- R. C. Baetzold, „Calculated Properties of Ag Clusters on Silver Halide Cubic Surface Sites“, J. Phys. Chem. B, 1997, v. 101, pp. 8180−8190
- K. A. Bosnick, T. L. Haslett, S. Fedrigo, M. Moskovits, W-T. Chan and R. Fournier „Tricapped tetrahedral Ag7: A structural determination by resonance Raman spectroscopy and density functional theory“, J. Chem. Phys, 1999, v. Ill, pp. 88 678 870.
- M. Hartmann, J. Pittner, .V. Bonacic-Koutecky, A. Heidenreic, J. Jortner, „Theoretical exploration offemtosecond multi-state nuclear dynamics of small clusters“, J. Chem. Phys., 1998, v 108, pp. 3096−3113.
- A. P. Sutton, J. Chen, „The many-body potential function for transition metals“, Phil. Mag. Lett., 1990, v. 61, p. 139 .
- J.P.K. Doye, D.J. Wales, „Global minima for transition metal clusters described by Sutton-Chenpotentials“ New J. Chem., 1998, v. 22, pp. 733−744.
- R. D. Adamson, „Novel Methods for Large Molecules in Quantum Chemistry“, Ph. D. Thesis, University of Cambridge, 1999, http://ket.ch.cam.ac.uk/people/ross/thesis/thesis.html
- R. Santamaria, I.G. Caplan, O. Novaro, „On structure and stability of small neutral and negatively charged silver clusters“, Chem. Phys. Lett., 1994., v 218. pp. 395.
- Y. Sakai- E. Miyoshi, M. Klobukwski, S. Huzinaga, „Model Potentials for Molecular Calculations. I. The sd-MP Set for Transition Metal Atoms Sc through Hg“ J. Comput.Chem. 1987, v 8, p. 256.
- J. Yoon, K. S. Kim, K. K. Baeck, „Ab initio study of the low-lying electronic states of AgJ, Ag3, and Agj.- A coupled-cluster approach“, J. Chem. Phys, 2000, v 112, pp. 9335−9342.
- J. M. Hutson, „Vibrational dependence of the anisotropic intermolecular potential of Ar-HF J. Chem. Phys., 1992, v.96, pp. 6752−6767.
- C. M. Lovejoy, J. M. Hutson, D. J. Nesbitt, „A spectroscopic puzzle in Ar-HF solved: the test of anew potential“, J. Chem. Phys, 1992, v. 97, pp. 8009−8018.
- S. Liu, Z. Bacic, J. W. Moskowitz, K. E. Schmidt, „Equilibrium structures and approximate HF vibrational red shifts for Ar"HF (n = 1−14) van der Waals clusters'“. J. Chem. Phys., 1994, v. 100, pp. 7166−7181.
- S. Liu, Z. Baicic, J. W. Moskowitz, K. E. Schmidt, UHF vibrational redshift for the icosahedral ArnHF van der Waals cluster is the same as in an Ar matrix: Quantum five-dimensional bound state calculations“ J. Chem Phys, 1994, v. 101, pp. 6359−6361.
- J. B. Anderson. „A random-walk simulation of the Schrodinger equation: H3″ J. Chem. Phys, 1975, v. 63, p. 1499 ().
- S. Liu, Z. Baicic, J. W. Moskowitz, K. E. Schmidt, „Isomer dependence of HF vibrational frequency shift for ArnHF (n=4−14) van der Waals clusters: Quantum five-dimensional bound state calculations“, J. Chem. Phys, 1995, v. 103, pp. 1829−1841.
- J. M. Hutson, S. Liu, J. W. Moskowitz, Z. Bacic, „Non-additive intermolecular forces in Ar"-HF Van der Waals clusters: effects on the HF vibrational frequency shift“, J. Chem. Phys, 1999, v. Ill, 8378−8383.
- T. G. Shinkevich, S. I. Lukjanov, S. K. Akhopian, „MC simulation of vibrational frequency shift of infinitely diluted Ar/HF solution“, Internet Journal of Chemistry, 1999, v 2, p 20.
- M. C. Yang, C. C. Carter, T. A. Miller, „Electronic spectroscopy of the RSH (R=Ne, Ar, Kr) complexes. “, J. Chem. Phys., 1997, pp. 3437−3446.
- C. C. Carter, T. A. Miller, „High resolution electronic spectroscopy of the RSH complexes (R=Ne, Ar, Kr). “, J. Chem. Phys., 1997, pp. 3437−3446.
- P. P. Korambath, X. T. Wu, E. F. Hayes, C. C. Carter, T. A. Miller, „Empirical potential energy surface for ArSH/D and KrSH/D“, J. Chem. Phys., 1997, v 107, pp. 3460−3470.
- J. N. L. Connor, H. Sun, J. M. Hutson, „Exact and approximate calculations for the effect of potential anisotropy on integral and differential cross sections“, J. Chem. Soc., Faraday Trans., 1990, v. 86, pp. 1649−1657.
- S. Green, D.J. DeFrees, A.D. McLean, „Calculations of H2O microwave line broadening in collisions with He atoms: Sensitivity to potential energy surfaces.“ J. Chem. Phys., 1991, v. 94, pp. 1346−1359
- L. Demeio, S. Green, L. Monchick. „Effects of velocity changing collisions on line shapes ofHF in Ar“ J. Chem. Phys., 1995, v. 102, pp. 9160−9166.
- P. H. Fries, W. Kunz, P. Calmettes, P. Turq. „Molecular solvent model for a cryptate solution in acetonitrile: A hypernetted chain study“ J. Chem. Phys., 1994, v 101, pp. 554 557.
- D. Young, „Dave Young’s Chemical Topics“,"QM/MM“
- URL http://www.ccl.net/cca/documents/dyoung/topics-framed/qmmm.shtml
- A. Tongaar, K. R. Liedl, B. M. Rode, „The hydration shell structure of Li+ investigated by Born-Oppenheimer ab initio QM/MMdynamics“ Chem. Phys. Lett, 1998, v 286, pp. 56−64.
- R. Car, M. Parrinello, „Unified approach for molecular dynamics and density-functional theory'“ Phys. Rev. Lett, 1985, v. 55, p. 2471.
- J. A. White, E. Schwegler, G. Galli, F. Gygi, ''The solvation ofNa + in water: First-principles simulations“ J. Chem. Phys, 2000, v 113, pp. 4668−4673.
- H. J. C. Berendsen, J. P. M. Postma, W. F. von Gunsteren, J. Hermans, in Intermolecular Forces, ed by Pullman (Riedel, Dordrecht, Holland, 1981), p. 331.
- W. J. Jorgensen, J. Chandrasekar, Jeffry D. Madura, „Comparison of simple potential functions for simulation liquid water“, J. Chem. Phys, 1983, v. 79, pp. 926−935.
- M. W. Mahoney, W. L. Jorgensen, „A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions“ J. Chem. Phys. 2000, v. 112, pp. 8910−8922
- P. Jedlovszky, R. Vallauri, „Structures properties of liquid HF: a computer simulation investigation“ Mol. Phys., 1998, v 93, pp. 15−25.
- J. C. Owicki, L. L. Shipman, H. A. Scheraga, „Empirical potential for water using electrons and nuclei“ J. Phys. Chem. 1975, v. 79, p 1794.
- T. Burgi, S. Graf, S. Leutwyler, W. Klopper, „An ab initio derived torsional potential energy surface for (H20)i. I. Analytical representation and stationary points“, J. Chem. Phys. 1995, v. 103, pp. 1077−1084.
- O. Matsuoka, E. Clementi, M. Yoshimine ,"C7 study of the water dimer potential surface» J. Chem. Phys. 1976, v 64, p. 1351.
- U. Niesar, G. Corongin, M. J. Huang, V. Dupius, E. Clementi, «Water dimer potential energy surface revisited', Int. J. Quant. Chem. Symp. 1989, v. 23, p. 421.
- S. F. Boys, F. Bernardi, Mol. Phys. 1970, v 19, p. 553.
- S. L. Price, A. J. Stone. «Correction for basis superposition error in correlated wavefunctions.'» Chem. Phys. Letters 1979, v. 65, pp.127−131.
- D.E. Woon, T.H. Dunning, Jr., «Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties», J. Chem. Phys. 1994,100, pp. 2975−2988.
- W. Klopper, M. SchUtz, H. P. Luthi, S. Leutwyler, «An ab initio derived torsional potential energy surface for (fyO)^ II. Benchmark studies and interaction energies», J. Chem. Phys. 1995, v. 103, pp. 1085−1098.
- M. H. Alexander, A. E. DePristo, «Fitting an ab initio HF—HFpotential surfaceJ. Chem. Phys. 1976, v. 65, p. 5009.
- M. Kofranek, H. Lischka, A. Karpfen «Electron-correlated study of hydrogen fluoride dimer» Chem. Phys. 1988, v. 121, p. 137.
- M. J. Redmon, J. S. Binkley «Global potential energy hypersurface for dynamical studies of energy transfer in HF-HF collisions» J. Chem. Phys. 1987, v. 87, pp. 969−982.
- M. Quack, M. A. Suhm. «Potential energy surfaces, quasiadiabatic channels, rovibrational spectra, and intramolecular dynamics of (HF)2 and its isotopomers from quantum Monte Carlo calculations.» J. Chem. Phys. 1991, v 95, pp. 28−59.
- W. Klopper, M. Quack, M. A. Suhm, «A new ab-initio based six-dimensional semi-empirical pair interaction potential for HF' Chem. Phys. Lett. 1996, v. 261, pp. 35−44.
- W. Klopper, M. Quack, M. A. Suhm, «HF dimer: Empirically refined analytical potential energy and dipole hypersurfaces from ab initio calculations», J. Chem. Phys. 1998, v. 108, pp. 10 096−10 115.
- M. Quack, J. Stohner, M. A. Suhm. «Vibrational dynamics of (HF)» aggregates from an ab initio based analytical (l+2+3)-body potential.» J. Mol. Struct. 1993, v. 294: pp. 33−36.
- M. Quack, M. A. Suhm. «Potential energy hypersurfaces for hydrogen bonded clusters (HF)n In E. S. Kryachko and J. L. Calais, editors, Conceptual Trends in Quantum Chemistry, Vol III, pp 415−463, Kluwer, Dordrecht, 1997.
- A. J. Stone, I. C. Hayes. «Intermolecular perturbation theory for van der Waals molecules.» Faraday Disc. Chem. Soc. 1982, v. 73, pp. 19−31
- M. P. Hodges, A. J. Stone, E. C. Lago, «Analytical Potentials for HF Dimer and Larger HF Clusters from ab Initio Calculations» J. Phys. Chem. A 1998, v. 102, pp. 2455−2465
- M. P. Hodges, A. J. Stone, S. S. Xantheas. «The contribution of many-body terms to the energy for small water clusters—a comparison of ab initio calculations and accurate mode potentials.» J. Phys. Chem.1997, v. 101, pp. 9163−9168.
- R.S. Fellers, «Spectroscopic determination of water pair potential» Ph. D. Thesis, University of California at Berkley, 1998.
- E. M. Mas, R. Bukowski, K. Szalewicz, G. C. Groenenboom, P. E. S. Wormer, A. van der Avoird «Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients» J. Chem. Phys. 2000 v 113, pp. 6687−6701.
- G. C. Groenenboom, P. E. S. Wormer, A. van der Avoird, E. M. Mas, R. Bukowski, K. Szalewicz «Water pair potential of near spectroscopic accuracy. II. Vibration-rotation-tunneling levels of the water dimer» J. Chem. Phys. 2000 v 113, pp 6702−6715.
- J. P. Devlin, C. Joyce, V. Buch, «Infrared Spectra and Structures of Large Water Clusters.» J. Phys. Chem. A 2000, v 104, pp.1974−1977
- L. Oudejans, R. E. Miller «Photodissociation of cyclic HF complexes: Pentamer through heptamer» J. Chem. Phys. 2000, v. 113, pp. 971−978.
- G. Niedner-Schatteburg, V. E. Bondybey, «FT-ICR Studies of Solvation Effects in Ionic Water Cluster Reactions» Chem. Rev. 2000, v. 100, pp. 4059−4086
- G. Torch et, P. Schwartz, J. Farges, M. F. de Feraudy «Structure of solid water clusters formed in a free jet expansion», J. Chem. Phys. 1983, v. 79, p. 6196.
- J. B. Paul, R. A. Provencal, C. Chapo, K. Roth, R. Casaes, R. J. Saykally ,"Infrared Cavity Ringdown Spectroscopy of the Water Cluster Bending Vibrations» J. Phys. Chem. A 1999, v. 103, pp. 2972−2974.
- K. Liu, M. G. Brown, R. J. Saykally, «Terahertz Laser Vibration-Rotation Tunneling Spectroscopy and Dipole Moment of a Cage Form of the Water Hexamer» J. Phys. Chem. A1997, v. 101, pp. 8995−9010.
- M. G. Brown, F. N. Keutsch, R. J. Saykally, «The bifurcation rearragement in cyclic water clusters: Breaking and making hydrogen bonds», J. Chem. Phys. 1998, v. 109, pp. 9645−9648.
- O. J. Lanning et al, «Definition of a guiding function' in global optimization: a hybrid approach combining energy and R-factor in structure solution from powder diffraction data» Chem. Phys. Lett. 2000, v 317(3−5), pp. 296−303.
- R.W. Becker, G.V. Lago, «A global optimization algorithm», In Proceedings of the 8th Allerton Conference on Circuits and Systems Theory, 3−12 1970.
- Torn, Aimo A. «Global Optimization» URL: http://www.abo.fi/~atorn/Globopt.html
- C .A. Floudas, V. Visweswaran «A Primal-Relaxed Dual Global Optimization Approach» JOTA 1993, v. 78(2), p. 187.
- C. D. Maranas, C. A. Floudas, UA deterministic global optimization approach for molecular structure determination» J. Chem. Phys. 1994, v 100, pp. 1247−1261.
- J. L. Klepeis, C. A. Floudas, «Free energy calculations for peptides via deterministic global optimization» J. Chem. Phys. 1999, v. 110, pp. 7491−7512.
- K. M. Westerberg, C. A. Floudas, «Locating all transition states and studying the reaction pathways of potential energy surfaces «J. Chem. Phys. 1999, v. 110, pp. 9259.
- URL:ftp://titan.princeton.edu/pub/cGOP
- H. S. Ryoo, N. V. Sahinidis, «A Branch-and-Reduce Approach to Global Optimization», Journal of Global Optimization, 1996, v. 8(2), pp. 107−139.
- URL:http://archimedes.scs.uiuc.edu/baron/availability.html
- K. W. Foreman, A. T. Phillips, J. B. Rosen, K. A. Dill, «Comparing Search Strategies for Finding Global Optima on Energy Landscapes» J. Comput. Chem. 1999, v. 20, pp. 1527−1532.
- K. S Kirkpatrick,. C. D Gelatt,. M. P. Vecchi, «Optimization bysimulated annealing.» Science 1983, v. 220, p. 671.
- N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. J. Teller, J. Chem Phys. 21, 1087 (1953)
- J. Ma, J. E. Straub, «Simulated annealing using the classical density distribution» J. Chem. Phys. 1994, v.101, pp. 533−541.1131. Tokuda, K. Aihara, T. Nagashima «Adaptive annealing for chaotic optimization» Phys. Rev. E 1998, v. 58, pp. 5157−5160.
- P. K. Venkatesh, M. H. Cohen, R. W. Carr, A. M. Dean, «Bayesian method for global optimization», Phys. Rev. E 1997, v. 55, pp. 6219−6232.
- William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, «Numerical Recipes in C. The Art of Scientific Computing» Second Edition, chapter 10.9 URL: http://lib-www.lanl.gov/numerical/bookcpdf/cl0−9.pdf
- J. P. Neirotti, David L. Freeman, J. D. Doll, «Approach to ergodicity in Monte Carlo simulations» Phys. Rev. E 2000, v. 62, pp. 7445−7461.
- J.R. Gunn, A. Monge, R.A. Friesner, C.H. Marshall, «Hierarchical Algorithm for Computer Modeling of Protein Tertiary Structure.» J. Phys. Chem. 1994, v. 98, pp702−711.
- P. Amara, D. Hsu, J.E. S traub,'' Quas i-quantal approach for global optimization», J. Phys. Chem. v. 97, p. 6715 (1993).
- URL: http://www.ingber.com
- URL:http://emlab.berkeley.edu/Soflware/abstracts/goffe895.html
- URL:http://www.taygeta.com/annealing/simanneal.html
- D. Karaboga, D. T. Pham, «Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks», Springer Verlag, 2000.
- D. Goldberg «Genetic Algorithms in Search Optimization And Machine Learning», Addison-Wesley, New-York, NY, 1989
- D. M. Deaven, N. Tit, J. R. Morris, K. M. Ho. uStructual optimization ofLennard-Jones clusters by a genetic algorithm «Chem. Phys. Lett. 1996, v 256, pp. 195−200.
- Y. Zeiri, «Structure and dynamics of CI and Cr Ions in Xe clusters» J. Phys. Chem. A 1998, v. 102, pp. 2785−2791.
- M. D. Wolf, U. Landman, «Genetic algorithms for structural optimization» J. Phys. Chem. A1998, v. 102, pp. 6129−6137.
- J. A. Niesse, H. R. Mayne «Global optimization of atomic and molecular clusters using the space-fixed modified genetic algorithm method'' J. Comput. Chem. 1997, v 18, pp. 1233−1244
- D. J. Wales, M. P. Hodges, «Global minima of water clusters (H20)n, n<21, described by an empirical potential» Chem. Phys. Lett. 1998, v. 286, pp. 65−72.
- URL:ftp://info.mcs.anl.gov/pub/pgapack/pgapack.tar.Z
- URL:http://lancet.mit.edu/ga/
- J. Kostrowicki, L. Piela, B. J. Cherayil, H. A. Scheraga «The diffuse smoothing approach for global optimization» J. Phys. Chem. 1991, v 95, p 4147.
- S. Schelstreate, H. Verschelde, «Finding minimum-energy configurations of Lennard-Jones clusters using an effective potential» J. Phys. Chem. A, v. 101, pp.310−315(1997)
- D.J. Wales, H.A. Scheraga, «Global Optimization of Clusters, Crystals and Biomolecules «Science 1999, v. 285, pp. 1368−1372.
- M.A. Miller, D.J. Wales, «Energy landscape of a model protein» J. Chem. Phys. 1999, v. Ill, pp. 6610−6616.
- R. P. White, H. R. Mayne, «An investigation of two approaches to basin hopping minimization for atomic and molecular clusters» Chem. Phys. Lett. 1998, v 289, pp 463 468.
- URL:http://fandango.ch.cam.ac.uk/programs.html#Orient
- P. Serra, A. F. Stanton, S. Kais, R. E. Bleil, «Comparison study ofpivot methods for global optimization» J. Chem. Phys. 1997, v 106, pp. 7170−7177.
- P. Serra, A. F. Stanton, S. Kais «Pivot method for global optimization «Phys. Rev. E 1997, v 55, pp. 1162−1165.
- P. Nigra, S. Kais «Pivot method for global optimization: a study of water clusters (H20)Nwith 2
- ΠΠΎΠ»ΡΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ\ ΠΏΠΎΠ΄. ΡΠ΅Π΄. ΠΠΆ. Π‘ΠΈΠ³Π°Π» Ρ. 1 ΠΠΆ. Π’ΡΠ»Π»ΠΈ ΠΠ΅ΡΠΎΠ΄ Π΄Π²ΡΡ Π°ΡΠΎΠΌΠ½ΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ² Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π΅, ΡΡΡ. 221.
- F.Y. Naumkin, D.J. Wales, «Influence of the Atom-Atom Interaction Anisotropy on the Structure and Stability of ArnCh Clusters «Chem. Phys. Lett.1998, v. 290, pp. 164 170.
- F.Y. Naumkin, D.J. Wales,» Structure and Properties of Ne*n Clusters from a Diatomics-in-Molecules Approach» Mol. Phys. 1998, v. 93, pp. 633−648.
- B.L. Grigorenko, A. V. Nemukhin, Y.A. Apkarian, «Many-body potentials and dynamics based on diatomics-in-molecules: Vibrational frequency shifts in ArnHF (n=l— 12,62) clustersJ.Chem. Phys. 1996, v. 104(14), p. 5510
- A. A. Buchachenko, N. F. Stepanov,» Ar-h interactions: The models based on the diatomics-in-molecule approach» J. Chem. Phys. 1996, v. 104, pp 9913−9925.
- M. Ovchinnikov, V. A. Apkarian «Practical formulation of accurate many-body potentials through the perturbative extension of diatomics-in-ionic-systems: Applied to HFclusters» J. Chem. Phys. 1999, v. l 10, pp. 9842−9852 .
- B. L. Grigorenko, A. A. Moskovsky, A. V. Nemukhin «Diatomics-in-ionic-systems and ab initio predictions for the stationary points on potential energy surfaces of the (HF)n clusters (n = 3−6) «J. Chem. Phys. 1999, v. 111, pp. 4442−4452.
- B. L. Grigorenko, A. r V. Nemukhin, I. A. Topol, S. K. Burt «Hydrogen bonding atthe diatomics-in-molecules level: Water clusters» J. Chem. Phys. 2000, v. 113, pp. 26 382 647.
- L. Pauling, The Nature of Chemical Bond, 2nd ed. (Oxford University Press, Oxford 1940)
- L. Andrews, G. L. Johnson, «FTIR matrix isolation spectroscopy of hydrogen fluoride» J. Phys. Chem. 1984, v. 88, pp.425−432.
- K. A. Peterson, T. H. Dunning, Jr."Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer» J. Chem. Phys. 1995, v. 102, pp. 2032−2041.
- A.Y. Nemukhin, B.L. Grigorenko, «Modeling properties of the HF dimer in argon clusters» Int J. Quant. Chem. 1997, v. 62, p. 55.
- V. Aquilanti, E. Luzatti, F. Pirani, G.G. Volpi, «Molecular beam studies of weak interactions for open-shell systems: The ground and lowest excited states of ArF, KrF, andXeF' J. Chem. Phys. 1988, v. 89, pp. 6165 6175.
- R. Ahlrichs, H. J. Bohm, S. Brode, K. T. Tang, J. P. Toennies, «Interaction potentials for alkali ion-rare gas and halogen ion-rare gas systems», J. Chem. Phys. 1988, v. 88(10), pp. 6290−6302.
- A. Moskovsky, A. Nemukhin, «Modeling the Solvation Sites in Rare-Gas Matrices with the Simulated Annealing Monte Carlo Technique'''' J. Chem. Inf. Comput. Sci. 1999, v. 39, pp. 370−375.
- L. Schinieder, W. Meier, K. H. Welge, M. N. R. Ashfold, C. M. Western «Photodissociation dynamics of H2S at 121.6 nm and determination of the potential energy function ofSH (A2lf) «J. Chem. Phys. 1990, v 92(12), pp 7027−7037.
- J. Zoval, D. Imre, V. A. Apkarian, «Spectroscopy of the SH (A-X) transition in Ar and Kr matrices: the caging of predissociation «J. Chem. Phys. 1993, v 98, pp. 1−7.
- E. Isoniemi, M. Pettersson, L. Khriachtchev, J. Lundell, M. Rasanen «Infrared Spectroscopy of H2S and SH in Rare-Gas Matrixes» J. Phys. Chem. A 1999, v. 103, pp. 679−685.
- William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, «Numerical Recipes in C. The Art of Scientific Computing» Second Edition, chapter 10.5 URL: http://lib-www.lanl.gov/numerical/bookcpdf/cl0−5.pdf
- B.L. Grigorenko, A.A. Moskovsky, A.V. Nemukhin, «An analysis of stationary points on the (HF)n potential surfaces (n<6) predicted by the diatomics-in-ionic systems model «J. Molec. Sruct. (Theochem) 2000, v.498, pp. 47−60
- B.L. Grigorenko, A.A. Moskovsky, A.V. Nemukhin, «An analysis of stationary points on the (HF)n potential surfaces (n<6) predicted by the diatomics-in-ionic systems model «J. Molec. Sruct. (Theochem) 2000, v.498, pp. 47−60
- B.L. Grigorenko, A.A. Moskovsky, A.V. Nemukhin «Diatomics-in-ionic systems and ab initio predictions for the stationary points on potential energy surfaces of the (HF)n clusters (n=3−6) «J. Chem. Phys. 1999, v. 111, pp.4442−4452.
- A.A.Moskovsky, B.L.Grigorenko, A.A.Granovsky, A.V.Nemukhin «Structures of the medium-size hydrogen fluoride clusters» 2000, v 74. Suppl. N 2, pp. 228 236
- B. J. Smith, D. J. Swanton, J. A. Pople, H. F. Schaefer llVTransition structures for the interchange of hydrogen atoms within the water dimer» J. Chem. Phys. 1990, v 92, pp 1240−1247.
- S. S. Xantheas «Ab initio studies of cyclic water clusters (H20)», n=l-6. III. Comparison of density functional with MP2 results» J. Chem. Phys. 1995, v. 102, p. 4505.
- M. Schutz, G. Rauhut, H.-J. Werner «Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H20)n, n = 2−4» J. Phys. Chem. A 1998, v 102, pp. 5997−6003.
- G. J. Tawa, I. A. Topol, S. K. Burt, R. A. Cardwell, A. A. Rashin «Calculation ofthe aqueous solvation free energy of the proton» J. Chem. Phys. 1998, v 109, p 4852.
- T. R. Dyke, K. M. Mack, J. S. Muenter, «The structure of water dimer from molecular beam electric resonance spectroscopy» J. Chem. Phys. 1977, v 66, pp. 498 510.
- J. A. Odutola, T. R. Dyke «Partially deuterated water dimers: Microwave spectra and structure» J. Chem. Phys. 1980, v 72, pp. 5062−5070.
- I. M. B. Nielsen, E. T. Seidl, C. L. Janssen, «Accurate structures and binding energies for small water clusters: The water trimer» J. Chem. Phys. 1999, v 110, p. 9435.
- H. Partridge, D. W. Schwenke «Potential energy surface for water» J. Chem. Phys, 1997, v 106, p. 4621.