Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

ИспользованиС матСматичСского языка для записи ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ВсС Π½ΠΎΠ²Ρ‹Π΅ понятия, Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹ ΠΈΠ»ΠΈ Ρ‡Π΅Ρ€Π΅Π· Ρ€Π°Π½Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ понятия ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ; всС Π½ΠΎΠ²Ρ‹Π΅ утвСрТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ (Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹) Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² ΠΈΠ»ΠΈ аксиом (ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ) ΠΏΡƒΡ‚Π΅ΠΌ Π΄Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ. ДСдукция — способ рассуТдСния, посрСдством ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠ· ΠΎΠ±Ρ‰ΠΈΡ… посылок с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ слСдуСт Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ИспользованиС матСматичСского языка для записи ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

АксиоматичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠ°ΠΊ основа построСния матСматичСских Ρ‚Π΅ΠΎΡ€ΠΈΠΉ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ называСтся Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ€Π°Π·ΡŠΡΡΠ½ΡΠ΅Ρ‚ΡΡ смысл Π½ΠΎΠ²ΠΎΠ³ΠΎ понятия.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π΅ΡΡ‚ΡŒ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΡΠΏΡ€Π°Π²Π΅Π΄Π»ΠΈΠ²ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ устанавливаСтся ΠΏΡƒΡ‚Π΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ рассуТдСния, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ.

Аксиомой называСтся истина, принимаСмая Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

НСпосрСдствСнный Π²Ρ‹Π²ΠΎΠ΄ ΠΈΠ· Π°ΠΊΡΠΈΠΎΠΌΡ‹ ΠΈΠ»ΠΈ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ называСтся слСдствиСм.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ построСния соврСмСнной ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ являСтся аксиоматичСский ΠΌΠ΅Ρ‚ΠΎΠ΄. ΠŸΡ€ΠΈ составлСнии ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π² ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½ΠΈΠΈ понятий, установлСнии связСй ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, Π² ΡΠ²Π΅Π΄Π΅Π½ΠΈΠΈ слоТных понятий ΠΊ Π±ΠΎΠ»Π΅Π΅ простым.

АксиоматичСскоС построСниС Ρ‚ΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ Ρ€Π°Π·Π΄Π΅Π»Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ осущСствляСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

  • 1) ΠΎΡ‚Π±ΠΈΡ€Π°ΡŽΡ‚ΡΡ Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹ — ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ число понятий ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ этими понятиями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ся;
  • 2) Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ утвСрТдСния — аксиомы, ΡƒΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ связь ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹ΠΌΠΈ понятиями ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡΠΌΠΈ (ΠΈ ΠΊΠΎΡΠ²Π΅Π½Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠ΅ ΠΈΡ…), ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΡ‹Π΅ Π·Π° ΠΈΡΡ‚ΠΈΠ½Π½Ρ‹Π΅ Π±Π΅Π· Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°;
  • 3) всС Π½ΠΎΠ²Ρ‹Π΅ понятия, Π²Π²ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρ‡Π΅Ρ€Π΅Π· ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Π΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹ ΠΈΠ»ΠΈ Ρ‡Π΅Ρ€Π΅Π· Ρ€Π°Π½Π΅Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ понятия ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ; всС Π½ΠΎΠ²Ρ‹Π΅ утвСрТдСния Ρ‚Π΅ΠΎΡ€ΠΈΠΈ (Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹) Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Π±Ρ‹Ρ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠ΅Ρ€Π²ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² ΠΈΠ»ΠΈ аксиом (ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ) ΠΏΡƒΡ‚Π΅ΠΌ Π΄Π΅Π΄ΡƒΠΊΡ†ΠΈΠΈ. ДСдукция — способ рассуТдСния, посрСдством ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠ· ΠΎΠ±Ρ‰ΠΈΡ… посылок с Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ слСдуСт Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ частного Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π°.

АксиоматичСский ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ строгого обоснования матСматичСских Ρ‚Π΅ΠΎΡ€ΠΈΠΉ, устанавливаСт Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠ΅ взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ матСматичСскими ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°ΠΌΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ½ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ