Бакалавр
Дипломные и курсовые на заказ

Агрегация циркулирующих в крови модифицированных липопротеидов низкой плотности. 
Роль в накоплении внутриклеточного холестерина

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Было показано, что инкубация нативных ЛНП с различными типами клеток не приводит к накоплению липидов. Причиной служит то, что они попадают в клетку через специфические ЛНП-рецепторы, которые обладают механизмом отрицательной обратной связи. Это дает возможность клетке регулировать ее внутриклеточное содержание холестерина. При обследовании больных с семейной гиперхолестеринемией, при которой… Читать ещё >

Содержание

  • СПИСОК СОКРАЩЕНИЙ
  • 1. ОБЗОР ЛИТЕРАТУРЫ
    • 1. 1. Роль модифицированных ЛНП в развитии атеросклероза
    • 1. 2. Модифицированные ЛНП, циркулирующие в крови человека
    • 1. 3. Усиление атерогенности модифицированных in vitro ЛНП в 18 результате их ассоциации
  • 2. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТ
    • 2. 1. Объекты исследования
      • 2. 1. 1. Выделение липопротеидов из плазмы крови человека
      • 2. 1. 2. Получение нативных и циркулирующих 26 щ модифицированных липопротеидов из плазмы крови человека
      • 2. 1. 3. Выделение белых клеток крови человека
      • 2. 1. 4. Выделение и культивирование клеток интимы аорты 28 человека
      • 2. 1. 5. Культура макрофагов человека
      • 2. 1. 6. Инкубация клеток с ЛНП
    • 2. 2. Методы исследования
      • 2. 2. 1. Определение содержания внутриклеточного холестерина
      • 2. 2. 2. Определение клеточного белка
      • 2. 2. 3. Определение содержания белка в ЛНП
      • 2. 2. 4. Определение относительного размера ЛНП (метод флуктуации светопропускания)
      • 2. 2. 5. Приготовление I-меченых препаратов липопротеидов
      • 2. 2. 6. Инкубация клеток с 1251-меченными ЛНП в 33 экспериментах по изучению их связывания, захвата и деградации
      • 2. 2. 7. Исследование деградации I-меченных ЛНП 34 культурами клеток
      • 2. 2. 8. Исследование ЛНП методом спиновых зондов
      • 2. 2. 9. Исследование ЛНП методом флуоресцентных зондов и меток
      • 2. 2. 10. Определение продуктов пероксидации липидов в ЛНП
      • 2. 2. 11. Определение содержания сиаловой кислоты в ЛНП
      • 2. 2. 12. Определение содержания углеводов в ЛНП
      • 2. 2. 13. Метод твердофазного иммуноферментного анализа
      • 2. 2. 14. Статистическая обработка данных
  • 3. РЕЗУЛЬТАТЫ
    • 3. 1. Накопление холестерина гладкомышечными клетками аорты 45 Ф человека и макрофагами при инкубации их с агрегированными и не агрегированными ЛНП
      • 3. 1. 1. Спонтанная ассоциация ЛНП вызывает накопление 45 эфиров холестерина в гладкомышечных клетках и макрофагах. Зависимость от размера агрегатов ЛНП
      • 3. 1. 2. Клеточный метаболизм агрегированных и не 47 агрегированных 1251-ЛНП
      • 3. 1. 3. Изучение механизма захвата агрегатов 1-ЛНП
    • 3. 2. Изучение особенностей структурной организации склонных к 51 агрегации циркулирующих множественно модифицированных
  • ЛНП
    • 3. 2. 1. Исследование структуры нативных и цмЛНП с 52 использованием спиновых и флуоресцентных зондов и меток
    • 3. 2. 2. Исследование структуры нативных и цмЛНП методом 62 иммуноферментного анализа
    • 3. 3. Изучение агрегации ЛНП при изменении их сольватной оболочки
    • 3. 3. 1. Изучение полиэтиленгликоль-индуцированной агрегации
    • 3. 3. 2. Агрегация ЛНП при понижении ионной силы
    • 3. 4. Дегликозилирование ЛНП способствует их ассоциации
  • ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  • ВЫВОДЫ

Агрегация циркулирующих в крови модифицированных липопротеидов низкой плотности. Роль в накоплении внутриклеточного холестерина (реферат, курсовая, диплом, контрольная)

В настоящее время сердечно-сосудистые заболевания — наиболее распространенная причина инвалидности и смертности в России и других индустриально развитых странах. Большинство сердечно-сосудистых заболеваний является следствием атеросклероза магистральных сосудов человека. Одним из первых проявлений атеросклероза на клеточном уровне принято считать накопление липидов, в частности эфиров холестерина, в интиме артерий [Аничков, 1947; Smith, 1974; Houst, 1978; Mahley, 1979; Fowler et al., 1979]. Источником липидов, накапливающихся в интиме сосудов, являются циркулирующие в крови липопротеиды низкой плотности (ЛНП) [Alaupovic, 1971; Cookson, 1971]. При этом нативные ЛНП, не накапливаются в культивируемых клетках в значимых количествах, то есть они не атерогенны [Bates et al., 1976; Ross, Harker, 1976; Goldstein et al., 1979]. С другой стороны, многими исследователями [Goldstein et al., 1979; Fogelman et al., 1980; Khoo et al., 1990; Lopes-Virella et al., 1988] было продемонстрировано, что ЛНП, модифицированные различным образом in vitro (ацетилированные, обработанные малоновым диальдегидом, окисленные, гликозилированные и т. д.), эффективно захватываются субэндотелиальными и другими клетками, то есть являются атерогенными. Оставалось не ясным, почему модифицированные такими разными способами ЛНП в конечном итоге обладают одним и тем же свойством — повышенным атерогенным потенциалом.

Тертов В.В. с соавт. в 1989 году изучали накопление липидов макрофагами после их инкубации с нативными, гликозилированными или окисленными ЛНП, а также с липопротеидами, модифицированными малоновым диальдегидом или нейраминидазой. Удалось показано, что модифицированные любым способом ЛНП образуют ассоциаты, и эти ассоциаты проявляют атерогенные свойства. Авторы предположили, что все ЛНП, модифицированные разными способами in vitro, объединяет одно и то же свойство — пониженная устойчивость к агрегации. Была выдвинута гипотеза: без модификации ЛНП невозможна их ассоциация (агрегация), без ассоциации ЛНП не проявляют выраженные атерогенные свойства. Впоследствии эта гипотеза была подтверждена многими исследователями, изучающими захват клетками ЛНП, агрегация которых была инициирована in vitro разными способами: вортексирование (интенсивное встряхивание) [Buton et al., 1999; Llorente-Cortes et al., 2000; Zhang et al., 2000], окисление медью [Hoff et al., 1992], окисление азо-инициатором [Kawabe et al., 1991; Tertov et al., 1998], обработка гипохлоритом [Hazell et al., 1994; Tertov et al., 1998; Панасенко с соавт., 2004], миелопероксидазой [Панасенко с соавт., 2004], фосфолипазой С [Zhang et al., 2000], сфингомиелиназой [Zhang et al., 2000; Marathe et al., 2000], протеазами [Lindstedt and Kovanen, 1995], гликозидазами [Панасенко с соавт., 2006]. Тем не менее, в крови больных атеросклерозом так и не удалось обнаружить липопротеиды, аналогичные модифицированным in vitro.

В конце 80-х годов прошлого столетия усилиями группы А. Н. Орехова и В. В. Тертова в крови больных ишемической болезнью сердца были обнаружены циркулирующие множественно модифицированные ЛНП (цмЛНП) [Orekhov et al., 1989; Tertov et al., 1990], значительно отличающиеся от нативных по физико-химическим свойствам, в частности, они имели пониженное содержание сиаловой кислоты, маннозы и других Сахаров. Примерно в то же время другими исследователями были обнаружены так называемые мелкие, плотные [Shen et al., 1981; La Belle and Krauss, 1990; Avogaro et al., 1991] и электроотрицательные [Avogaro et al., 1988] ЛНП, которые, как выяснилось позже, по сути представляют собой наряду с цмЛНП одну и ту же подфракцию близких по свойствам липопротеидных частиц, подвергшихся множественной модификации in vivo [Тертов, 1999]. Циркулирующие в крови модифицированные ЛНП обладали двумя общими свойствами: стимулировали липоидоз на клеточном уровне и проявляли склонность к ассоциации, причем, их атерогенный потенциал напрямую зависел от устойчивости к ассоциации и увеличивался с ее понижением [Orekhov et al., 1990; Tertov et al., 19 891 998].

Однако оставалось не понятным, какие именно изменения должны произойти в частице ЛНП, чтобы она потеряла устойчивость к агрегации? Каков механизм агрегации? Как зависит эффективность поглощения клеткой частиц ЛНП от их размера? Отличается ли клеточный метаболизм агрегатов ЛНП от не агрегированных частиц ЛНП?

Цели и задачи исследования. Целью настоящей работы явилось изучение устойчивости к ассоциации циркулирующих в крови человека модифицированных ЛНП, поиск физико-химических изменений в ЛНП, благодаря которым липопротеиды приобретают склонность к ассоциации, изучение механизма накопления липидов в клетках, вызванного ассоциатами ЛНП.

Для достижения этой цели необходимо было решить следующие задачи:

1. Изучить захват и деградацию ассоциатов ЛНП клетками с целью выявления механизма накопления внутриклеточного холестерина.

2. Изучить особенности структурной организации склонных к агрегации ЛНП, используя метод спиновых и флуоресцентных меток и зондов, а также панель моноклональных антител к апо-В-100.

3. Изучить устойчивость ЛНП к ассоциации при изменении сольватной оболочки и при дегликозилировании.

1. ОБЗОР ЛИТЕРАТУРЫ.

Одним из наиболее ранних проявлений атеросклеротического поражения является внутриклеточное и внеклеточное отложение липидов, преимущественно эфиров холестерина, в интиме сосудов [Аничков, 1947; Smith, 1974; Houst, 1978; Mahley, 1979; Fowler et al., 1979]. Образование наполненных липидными включениями пенистых клеток является инициирующим моментом патогенеза атеросклероза, однако, механизмы накопления внутриклеточных липидов изучены недостаточно.

Было установлено, что источником липидов, накапливающихся в клетках сосудов, являются ЛНП, циркулирующие в крови человека [Bates et al., 1976; Ross, Harker, 1976; Wissler et al., 1976; Chen et al, 1977; Goldstein et al., 1979]. Частица ЛНП состоит из гидрофобного ядра, которое покрыто оболочкой из фосфолипидов, холестерина и одной молекулы апо-В-100. Каждая частица ЛНП содержит примерно 1600 молекул этерифицированного холестерина, 700 молекул фосфолипидов, 600 молекул неэтерифицированного холестерина и 170 молекул триглицеридов [Esterbauer et al., 1992]. Фосфолипиды представлены главным образом фосфатидилхолином (500 молекул) и сфингомиелином (200 молекул). Установлено, что апо-В-100 связывается в основном с молекулами фосфатидилхолина [Lund-Katz and Phillips., 1986; Sommer et al., 1992; Murphy et al., 1997], в то время как холестерин в большей степени связывается со сфингомиелином [Lund-Katz et al., 1988; Mattjus et al., 1996].

Было показано, что инкубация нативных ЛНП с различными типами клеток не приводит к накоплению липидов [Fogelman et al., 1981; Brown et al., 1983; Haberland et al., 1987,1988]. Причиной служит то, что они попадают в клетку через специфические ЛНП-рецепторы, которые обладают механизмом отрицательной обратной связи [Goldstein and Brown, 1977]. Это дает возможность клетке регулировать ее внутриклеточное содержание холестерина. При обследовании больных с семейной гиперхолестеринемией, при которой наблюдается частичное или полное отсутствие специфических ЛНП-рецепторов, было показано, что липопротеиды низкой плотности все же попадают в клетки и накапливаются, образуя пенистые клетки. В поиске альтернативных рецепторов Браун и Гольдштейн [Goldstein et al., 1979] обнаружили рецептор для ацетилированных ЛНП или скэвенджер-рецептор, через который осуществляется неконтролируемый захват ЛНП клетками. Позднее было показано, что ацетил-ЛНП-рецептор — один из многих так называемых скэвенджер-рецепторов, присутствующих у макрофагов и других типов клеток [Krieger et al., 1993]. Скэвенджер-рецепторы к ацетилированным ЛНП подразделяются на А1 и А2 [Kodama et al., 1990]. Известно также, что другие рецепторы, такие как CD68, CD36, SR-B1 и LOX-1, проявляют те же свойства, что и скэвенджер-рецепторы [Krieger., 1997].

Семейная гиперхолестеринемия — достаточно редкое заболевание. В гомозиготной форме им болеет 1 человек на миллион, в гетерозиготной — 1 человек на 300 тысяч. Атеросклероз же наблюдается у каждого мужчины после сорока лет и у большинства женщин после наступления менопаузы. Следовательно, накопление липидов в интиме сосудов нельзя объяснить наличием скэвенджер-рецепторов, так как нативные ЛНП попадают в клетку через специфические апоВ, Е-рецепторы, а не через скэвенджер-рецепторы [Fogelman et al., 1981; Brown et al., 1983; Haberland et al., 1987,1988]. Была выдвинута гипотеза о необходимости изменений свойств ЛНП в результате некой химической модификации, обязательной для того, чтобы произошло накопление липидов в клетках.

В интиме артерий и кровеносном русле существуют протеолитические и липолитические ферменты, способные модифицировать ЛНП. Во внеклеточном пространстве интимы были обнаружены химаза и триптаза, две нейтральные протеазы, секретируемые тучными клетками [Kaartinen et al., 1994], металлопротеиназы, секретируемые макрофагами и гладкомышечными клетками [Galis et al., 1994], плазмин [Grainger et al., 1994], тромбин [Smith et al., 1996] и лизосомальные протеазы [Lojda et al., 1984; Sukhova et al., 1998]. Химаза тучных клеток крысы может гидролизовать белковую часть ЛНП [Kokkonen et al., 1986; 1989], лизосомальные протеазы макрофагов разрушают апо-В-100 при кислых значениях рН [Leake et al., 1990]. Плазмин, калликреин, тромбин [Piha et al., 1995] и другие металопротеиназы также способны модифицировать апобелок ЛНП.

Во внеклеточном матриксе интимы присутствуют фосфолипаза А2 [Menschikowski et al., 1995; Hurt-Camejo et al., 1997; Romano et al., 1998] и сфингомиелиназа [Schissel et al., 1996; Marathe et al., 1999]. Фосфолипаза A2 гидролизует фосфатидилхолин ЛНП [Sartipy et al., 1996]. Сфингомиелиназа при кислых значениях рН гидролизует молекулы сфингомиелина, особенно после гидролиза ЛНП в нейтральной среде фосфолипазой А2 [Schissel et al., 1998].

В интиме была обнаружена рН-зависимая холестеринэстераза [Shamir et al., 1996; Li et al., 1998], которая способна гидролизовать лизофосфолипиды в окисленных ЛНП, а также в присутствии холата, эфиры холестерина. Наконец, макрофаги и пенистые клетки в стенке сосуда синтезируют лизосомальную кислую липазу [Davis et al., 1985]. Активен ли этот фермент во внеклеточном пространстве — неизвестно.

В интиме аорты есть ферменты, способные к окислению липопротеидов: 15-липоксигеназа [Yla-Herttuala et al., 1990], миелопероксидаза [Daugherty et al., 1994], гемоксигеназа-l [Wang et al., 1998]. Также в интиме находятся NO-синтаза [Luoma et al., 1998] и НАДФН-оксидаза [Azumi et al., 1999], которые продуцируют весьма реакционные соединения, способные окислять ЛНП. Области атеросклеротического поражения содержат также церулоплазмин [Swain et al., 1995] и ионы металлов переменной валентности [Swainet al., 1995; Smith et al., 1992; Evans et al., 1995; Lamb et al., 1995.], которые способны усугублять окисление ЛНП.

выводы.

1. Нативные ЛНП в период инкубации при 37 °C в С02-инкубаторе не образуют агрегатов, в то время как цмЛНП в аналогичных условиях ассоциируют в более крупные частицы. Удаление агрегатов цмЛНП путем фильтрации препятствует накоплению липидов в гладкомышечных клетках или макрофагах. Способность клеток накапливать холестерин зависит от степени агрегации цмЛНП и возрастает с увеличением среднего размера частиц цмЛНП.

2. Установлено, что относительная скорость захвата и внутриклеточной деградации агрегатов цмЛНП гладкомышечными клетками непораженной интимы аорты человека или макрофагами возрастает по сравнению с захватом и деградацией не агрегированных ЛНП. Однако скорость захвата достоверно превосходит скорость деградации, что приводит к накоплению холестерина в клетках. Полученные данные позволяют заключить, что захват агрегатов цмЛНП клетками происходит путем неспецифического фагоцитоза.

3. Использование спиновых и флуоресцентных зондов и меток, дающих усредненные характеристики частиц ЛНП, не позволило выявить достоверных различий в физико-химических свойствах нативных ЛНП и цмЛНП.

4. Связывание моноклональных антител к апо-В-100 с поверхностью частиц липопротеидов показало существование локальных различий в расположении отдельных фрагментов апо-В-100 на поверхности цмЛНП в сравнении с нативными ЛНП.

5. Циркулирующие модифицированные ЛНП менее устойчивы к ассоциации по сравнению с нативными ЛНП в условиях нарушения их сольватной оболочки путем снижения ионной силы среды или инкубации с полиэтиленгликолем, причем процесс ассоциации является необратимым.

6. Липопротеиды, поверхность которых обеднена углеводами в результате ферментативного дегликозилирования (удаление как сиаловой кислоты или маннозы, так и целых гликозидных остатков), теряют устойчивость к ассоциации и агрегируют. Между размером агрегатов ЛНП и их способностью вызывать накопление липидов в интимальных клетках существует прямая зависимость.

Показать весь текст

Список литературы

  1. Н.Н. Частная патологическая анатомия. Выпуск II. Сердце и сосуды. Второе издание. Москва-Ленинград, Медгиз, 1947.
  2. О., Джост П. Метод спиновых меток. Теория и применение. Ред. Л. Берлинер. М.: Мир, 1979. С. 489−569.
  3. Г. Е. Флуоресцентные зонды в исследовании клеток, мембран и липопротеинов. Москва: Наука, 1989.
  4. Г., Штренге К. Коагуляция и устойчивость дисперстных систем. Л., Химия, 1973. 451с.
  5. А. Н., Никульчева Н. Г. Липиды, липопротеиды и атеросклероз. Изд-во «Питер», Санкт-Петербург. 1995.
  6. А.Н. Метод спинового зонда. М.: Наука, 1976.
  7. Н.К., Лапшин Е. Н., Добрецов Г. Е., Тур И.Н., Афанасиади Л. Ш. 4−5-(фенилоксазолил-2)-1-пентадецил.пиридиний флуоресцентный зонд для определения площади поверхности мембран и липопротеинов. Биологические мембраны, 1989, 6, 725−732.
  8. О.М., Борин М. Л., Азизова О. А., Арнольд К. Определение поверхностного заряда липопротеидов и его изменения при перекисном окислении липидов. Биофизика, 1985, 30, 822−827.
  9. О.М., Вольнова Т. В., Азизова О. А., Владимиров Ю. А. Биол. Мембраны, 1988,5, 1186−1191.
  10. Я., Бутлер К. Метод спиновых меток. Теория и применение Ред. Л. Берлинер. М.: Мир, 1979. С. 444−488.
  11. В.В. Множественно-модифицированные липопротеиды низкой плотности, циркулирующие в крови человека Ангиология и сосудистая хирургия, 1999, 5, 218−236.
  12. Г. Р. Руководство по гиперлипидемии. Изд-во Gorenjski Tisk, Югославия. 1992.
  13. Е.В., Валентинова Н. В., Медведева Н. В., Морозкин А. Д., Власик Т. Н. Иммунохимическая гетерогенность липопротеинов низкой плотности человека. Ангиология и сосудистая хирургия, 1999, 5 (приложение), 241−251.
  14. Aggerbeck L.P., Kezdy F.J. and Scanu A.M. Enzymatic probes of lipoprotein structure. Hydrolysis of human serum low density lipoprotein-2 by phospholipase A2. J. Biol. Chem, 1976, 251, 3823−3830.
  15. Alaupovic P. Apoliproproteins and lipoproteins. Atherosclerosis, 1971, 13(2), 141−6.
  16. Arnold K., Arnhold J., Zschornig O., Wiegel D., Krumbiegel M. Characterization of chemical modifications of surface properties of low density lipoproteins. Biomed. Biochim. Acta, 1989, 48, 735−742.
  17. Arnold K., Herrmann A., Gawrisch K., Pratsch L. In: Molecular Mechanisms of Membrane Fusion. New York. 1987, 118−137.
  18. Arnold K., Zschornig O. Aggregation of human plasma low density lipoproteins by means of poly (ethylene glycol).Biomed. Biochim. Acta, 1988,47, 949−954.
  19. Avogaro P., Bon G.B. and Cazzolato G. Presence of a modified low density lipoprotein in humans. Arterioscler. Thromb. Vase. Biol., 1988, 8, 79.
  20. Avogaro P., Cazzolato G. and Bittolo-Bon G. Some questions concerning a small, more electronegative LDL circulating in human plasma. Atherosclerosis, 1991,91(1−2), 163−71.
  21. Azumi H.N., Takeshita I.S., Rikitake Y., Kawashima S., Hayashi Y., Itoh H. and Yokoyama M. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation, 1999, 100, 1494−1498.
  22. Barenghi L., Bradamante S., Giudici G.A. and Vergani C. NMR analysis of low-density lipoprotein oxidatively-modified in vitro. Free Radic. Res. Commun., 1990, 8, 175−183.
  23. Bates S.R., Wissler R.W. Effect of hyperlipemic serum on cholesterol accumulation in monkey aortic medial cells. Biochim Biophys Acta, 1976, 450(1), 78−88.
  24. Baumstark M.W., Kreutz W., Berg A., Frey I. and Keul J. Structure of human low-density lipoprotein subfractions, determined by X-ray small-angle scattering. Biochim. Biophys. Acta, 1990, 1037, 48−57.
  25. Bilheimer DW, Eisenberg S, Levy RI. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biphys Acta, 1972, 260, 212.
  26. Brown M.S. and Goldstein J.L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem., 1983, 52, 223−261.
  27. Busch H., Hasilik A., Domschke W. Elevated level of b-hexosaminidase and a-mannosidase in human immunodeficiency virus-infected patients. J Infect Dis., 1995, 17, 683−686.
  28. Camejo G., Hurt E., Wiklund O., Rosengren В., Lopez F., and Bondjers G. Modifications of low-density lipoprotein induced by arterial proteoglycans and chondroitin-6-sulfate Biochim Biophys Acta., 1991, 1096(3), 253−61.
  29. Cazzolato G., Avogaro P. and Bittolo-Bon G. Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic Biol Med., 1991, 11(3), 247−53.
  30. Chao F.F., Blanchette-Mackie E.J., Tertov V.V., Skarlatos S.I., Chen Y.J., and Kruth H.S. Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome. J. Biol. Chem., Mar 1992, 267, 4992 4998.
  31. Chen R.F., Scott C., Trepman E. Fluorescence properties of o-phthaldialdehyde derivatives of amino acids. Biochim. et Biophys. Acta., 1979,576, 440−455.
  32. Chen R.M., Fisher-Dzoga K. Effect of hyperlipemic serum lipoproteins on the lipid accumulation and cholesterol flux of rbbit aorticmedial cells. Atherosclerosis, 1977, 28, 339−353.
  33. Cookson F.B. The origin of foam cells in atherosclerosis. Br J Exp Pathol, Feb 1971,52(1), 62−9.
  34. Cross A.S., Wrigh D.G. Mobilization of sialidase from intracellular stores to the surface of human neutrophils and its role in stimulated adhesion responses of these cells. J Clin Invest. 1991, 88, 2067−2076.
  35. Cynshi O., Takashima Y., Suzuki Т., Kawabe Y., Ohba Y. and Kodama T. Characterization of aggregated low density lipoproteins induced by copper-catalyzed oxidation. J. Atheroscler. Thromb., 1994, 1, 87−97.
  36. Daugherty A., Dunn J.L., Rateri D.L. and Heinecke J.W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest., 1994, 94, 437−444.
  37. Davis H.R., Glagov S. and Zarins C.K. Role of acid lipase in cholesteryl ester accumulation during atherogenesis. Correlation of enzyme activitywith acid lipase-containing macrophages in rabbit and human lesions. Atherosclerosis, 1985, 55, 205−215.
  38. Deckelbaum R.J. Apoprotein В Structure andR eceptor Recognition of Triglyceride-rich Low Density Lipoprotein (LDL) Is Modified in Small LDL but Not in Triglyceride-rich LDL of Normal Size J. Biol. Chem, 1994, 269,511−519.
  39. Dobretsov G.E., Kurek N.K., Machov V.N., Syrejshchikova T.I., Yakimenko M.N. Determination of fluorescent probes localization in membranes by nonradiative energy transfer. Journal of Biochem. and Biophys. Methods, 1989, 19, 259−274.
  40. Dobretsov G.E., Spirin M.M., Chekrygin O.V., Karmansky I.M., Dmitriev V.M. and Vladimirov Yu.A. A fluorescence study of apolipoprotein localization in relation to lipids in serum low density lipoproteins. Biochim Biophys Acta, 1982, 710(2), 172−80.
  41. Dobrian A., Mora R., Simionescu M. and Simionescu N. In vitro formation of oxidatively-modified and reassembled human low-density lipoproteins: antioxidant effect of albumin. Biochim. Biophys. Acta, 1993, 1169, 12−24.
  42. Eichenberger K., Bohni P., Winterhalter K.H., Kawato S. and Richter C. Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett., 1982, 142, 59−62.
  43. Enerbach L. Detection of histamine in mast cells by o-phtalalaldehyde reaction after liquid fixation. J. Histochem. Cytochem, 1969, 17, 757−759.
  44. Esterbauer H., Gebicki J., Puhl H. and Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med., 1992, 13, 341−390.
  45. Evans .P, Smith J.C., Mitchinson M.J. and Halliwell B. Metal ion release from mechanically-disrupted human arterial wall. Implications for the development of atherosclerosis. Free Radic. Res. 1995, 23, 465−469.
  46. Fenske D.B., Chana R.S., Parmar Y.I., Treleaven W.D. and Cushley R.J. Structure and motion of phospholipids in human plasma lipoproteins. A 3 IP NMR study. Biochemistry, 1990, 29, 3973−3981.
  47. Filipovic I. Effect of inhibiting N-glycosylation on the stability and binding activity of the low density lipoprotein receptor. J. Biol. Chem., 1989, 264, 8815 8820.
  48. Fogelman A.M., Shechter I., Seager J., Hokom M., Child J.S. and Edwards P.A. Malondialdehyde Alteration of Low Density Lipoproteins Leads to Cholesteryl Ester Accumulation in Human Monocyte-Macrophages. Proc. Natl. Acad. Sci. USA., 1980, 77, 2214 2218.
  49. Fowler S.M., Scio M.A., Haley N.J. Characterization of lipid-laden aortic cells from cholestrol rabbits. IV. Investigation of macrophage-like proteins of aortic cell populations. Lab Invest., 1979, 41, 372−378.
  50. Gaffney B.J. Fatty Acid Chain Flexibility in the Membranes of Normal and Transformed Fibroblasts. Proc. Natl. Acad. Sci. USA., 1975, 72, 664−668.
  51. Goldstein J.L. and Brown M.S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem, 1977, 46, 897−930.
  52. Goldstein J.L., Ho Y.K., Basu S.K., and Brown M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA, 1979, 76, 333−337.
  53. Gorshkova I.N., Menschikowski M. and Jaross W. Alterations in the physicochemical characteristics of low and high density lipoproteins after lipolysis with phospholipase A2. A spinlabel study. Biochim. Biophys. Acta, 1996, 1300, 103−113.
  54. Gotto A.M. Plasma Lipoproteins. New Comprehensive Biochem., 14. Elsevier, Amsterdam, New York, Oxford, 1987.
  55. Grainger D.J., Kemp P.R., Liu A.C., Lawn R.M. and Metcalfe J.C. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein (a) mice. Nature, 1994, 370, 460−462.
  56. Haberland M.E., Fogelman A.M. The role of altered lipoproteins in the pathogenesis of atherosclerosis. Amer. Heart J. 1987, 259, 11 305−11 311.
  57. Haberland M.E., Fong D., Chen L. Maalondialdehyde-altered protein in atheroma of Watanabe heritable hyperlipidemic rabbits. Science, 1988, 241, 215−218.
  58. Hakala J.K., Oorni K., Ala-Korpela M. and Kovanen P.T. Lipolytic modification of LDL by phospholipase A2 induces particle aggregation in the absence and fusion in the presence of heparin. Arterioscler. Thromb. Vase. Biol., 1999, 19, 1276−1283.
  59. Hanson V.A., Schettinger U.R., Loungani R.R., Nadijcka M.A. Plasma sialidase activity in acute myocardial infarction. Am Heart J., 1987, 114, 59−63.
  60. Haust M.D. Light and electron microscopyof human atherosclerosis lesions. Adv Exp Med Biol., 1978, 10, 33−59.
  61. Hazell L.J., van den Berg J.J. and Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J., 1994, 302 (Pt 1), 297−304.
  62. Hirani S., Winchester B. The multiple forms of a-D-mannosidase in human plasma. Biochem J., 1979, 179, 583−592.
  63. Hoff H.F. and O’Neil J. Lesion-derived low density lipoprotein and oxidized low density lipoprotein share a lability for aggregation, leading to enhanced macrophage degradation. Arterioscler. Thromb., 1991, 11, 12 091 222.
  64. Hoff H.F., Whitaker Т.Е. and O’Neil J. Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. J. Biol. Chem., 1992, 267, 602−609.
  65. Holopainen J.M., Subramanian M., Kinnunen K.J. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry, 1998, 37, 17 562−17 570.
  66. Howard G.C., Pizzo S.V. Lipoprotein (a) and its role in atherothrombotic disease. Lab. Invest., 1993, 69, 373−386.
  67. Huang H-W., Goldberg E.M., and Zidovetzki R. Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem. Biophys. Res. Commun., 1996, 220, 834−838.
  68. Hurt-Camejo E., Camejo G., Peilot H., Oorni K. and Kovanen P. Phospholipase A2 in Vascular Disease Circ. Res., 2001, 89, 298 304.
  69. Kawabe Y., Cynshi O., Takashima Y., Suzuki Т., Ohba Y. and Kodama T. Oxidation-induced aggregation of rabbit low-density lipoprotein by azo initiator. Arch Biochem Biophys., 1994, 310(2), 489−96.
  70. Khoo J.C., Miller E., McLoughlin P. and Steinberg B. Prevention of low density lipoprotein aggregation by high density lipoprotein or apolipoprotein A-I. J. Lipid Res., 1990, 31, 645.
  71. Kleinman Y., Krul E.S., Burnes M., Aronson W., Pfleger B. and Schonfeld G. Lipolysis of LDL with phospholipase A2 alters the expression of selected apoB-100 epitopes and the interaction of LDL with cells. J. Lipid Res., 1988, 29, 729−743.
  72. Klimov A.N. Atherosclerosis Rev., 1988, 17, 75−86.
  73. Kodama Т., Freeman M., Rohrer L., Zabrecky J., Matsudaira P. and Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature, 1990, 343, 531−535.
  74. Kokkonen J.O. and Kovanen P.T. Proteolytic enzymes of mast cell granules degrade low density lipoproteins and promote their granule-mediated uptake by macrophages in vitro. J. Biol. Chem., 1989, 264, 10 749−10 755.
  75. Kokkonen J.O., Vartiainen M. and Kovanen P.T. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein В by granule chymase and carboxypeptidase A. J. Biol. Chem., 1986, 261, 16 067−16 072.
  76. Krieger M., Acton S., Ashkenas J., Pearson A., Penman M., and Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J. Biol. Chem., 1993,268, 4569−4572.
  77. Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr. Opin. Lipidol., 1997, 8, 275−280.
  78. Kroon P.A. Fluorescence study of the motional states of core and surface lipids in native and reconstituted low density lipoproteins. Biochemistry, 1994,33,4879−4884.
  79. La Belle M., Krauss R.M. Differences in carbohydrate content of low density lipoproteins associated with low density lipoprotein subclass patterns. J Lipid Res., 1990,31, 1577−1588.
  80. Lamb D.J., Mitchinson M.J. and Leake D.S.Transition metal ions within human atherosclerotic lesions can catalyse the oxidation of low density lipoprotein by macrophages. FEBS Lett., 1995, 37, 12−16.
  81. Leake D.S., Rankin S.M. and Collard J. Macrophage proteases can modify low density lipoproteins to increase their uptake by macrophages. FEBS Lett., 1990, 269, 209−212.
  82. Li F. and Hui D.Y. Synthesis and secretion of the pancreatic-type carboxyl ester lipase by human endothelial cells. Biochem. J., 1998, 329, 675−679.
  83. Lin R.C., Dai J., Lumeng L. and Zhang M.Y. Serum low density lipoprotein of alcoholic patients is chemically modified in vivo and inducesapolipoprotein E synthesis by macrophages. J. Clin. Invest., May 1995, 95(5), 1979−86.
  84. Lindgren F.T. Preparative ultracentrifugal laboratory procedures and suggestions of lipoprotein analysis. In: Analysis of lipids and lipoproteins. Ed. E.G. Perkins, Champaign: American Oil Chemical Society, 204−224.
  85. Liu H., Scraba D.G. and Ryan R.O. Prevention of phospholipase-C induced aggregation of low density lipoprotein by amphipathic apolipoproteins. FEBS Lett., 1993, 316, 27−33.
  86. Lojda Z., Ruzickova M., Havrankova E. and Synkova V. Lysosomal proteases in the normal and atherosclerotic arterial wall. Histochem. J., 1984, 16, 399—405.
  87. Lombardo A., Bairati C., Goi G., Roggi C., Maccarini L., Bollini D., Burlina A. Plasma lysosomal glycohydrolases in a general population. Clin ChimActa., 1996, 247,39−4.
  88. Lopes-Virella M.F., Klein R.L., Lyons T.J., Stevenson H.C. and Witztum J.L. Glycosylation of low-density lipoprotein enhances cholesteryl ester synthesis in human monocyte-derived macrophages. Diabetes, 1988, 37, 550.
  89. Lottin H., Motta C. and Simard G. Differential effects of glycero- and sphingo-phospholipolysis on human high-density lipoprotein fluidity. Biochim. Biophys. Acta, 1996, 1301, 127−132.
  90. Lougheed M., Steinbrecher U.P. Mechanism of uptake of copper-oxidized low density lipoprotein in macrophages is dependent on its extent of oxidation J. Biol. Chem., 1996, 271, 11 798−11 805.
  91. Lowiy O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein mesurement with the Folin reagent. J. Biol. Chem., 1951, 193, 265−275.
  92. Lund-Katz S. and Phillips M.C. Packing of cholesterol molecules in human low-density lipoprotein. Biochemistry, 1986, 25, 1562−1568.
  93. Lund-Katz S., Laboda H.M., McLean L.R. and Phillips M.C. Influence of molecular packing and phospholipid type on rates of cholesterol exchange. Biochemistry, 1988, 27, 3416−3423.
  94. Mahley R.W., Innerarity T.L., Weisgraber K.H., Oh S.Y. Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective modification of lysine residues of apoproteins. J Clin Invest., 1979, 64, 743−750.
  95. Major I. and Aviram M. Macrophage released proteoglycans are involved in cell-mediated aggregation of LDL. Atherosclerosis, Jan 1999, 142(1), 57−66.
  96. Marsche G., Zimmermann R., Horiuchi S., Tandon N.N., Sattler W. and Malle E. Class В Scavenger Receptors CD36 and SR-BI Are Receptors for Hypochlorite-modified Low Density Lipoprotein J. Biol. Chem., 2003, 278, 47 562−47 570.
  97. Mateu L., Avila E.M., Camejo G., Leon V. and Liscano N. The structural stability of low-density lipoprotein. A kinetic X-ray scattering study of its interaction with arterial proteoglycans. Biochim. Biophys. Acta., 1984, 795, 525−534.
  98. Mattjus P. and Slotte J.P. Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? Chem. Phys. Lipids., 1996, 81, 69−80.
  99. Menschikowski M., Kasper M., Lattke P., Schiering A., Schiefer S., Stockinger H. and Jaross W. Secretory group II phospholipase A2 in human atherosclerotic plaques. Atherosclerosis, 1995, 118, 173−181.
  100. Ohki S., Arnold K. Surface dielectric constant, surface hydrophobicity and membrane fusion. J. Membr. Biol., 1990, 114, 195−203.
  101. Orekhov A.N., Tertov V.V. and Mukhin D.N. Desialylated low density lipoprotein—naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis, 1991, 86(2−3), 153−61.
  102. Paananen K. and Kovanen P.T. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J. Biol. Chem., 1994, 269, 2023−2031.
  103. Panasenko O.M., Vol’nova T.V., Azizova O.A. and Vladimirov Y.A. Free radical modification of lipoproteins and cholesterol accumulation in cells upon atherosclerosis. Free Radic. Biol. Med. 1991, 10, 137−148.
  104. Pentikainen M.O., Lehtonen E.M.P. and Kovanen P.T. Aggregation and fusion of modified low density lipoprotein. J. Lipid Res., 1996, 37, 26 382 649.
  105. Piha M., Lindstedt L. and Kovanen P.T. Fusion of proteolyzed low-density lipoprotein in the fluid phase: a novel mechanism generating atherogenic lipoprotein particles. Biochemistry, 1995,34, 10 120−10 129.
  106. Pineto G.J., White R.R. Phagocytosis of latex beads by a human gingival epithelial-like cell line in tissue culture. J. Dent. Res., 1977, 56, 1119.
  107. Prence E.M., Natowicz M.R. Diagnosis of a-mannosidosis by measuring a-mannosidase in plasma. Clin Chem., 1992, 38, 501−503.
  108. Quinn M.T., Parthasarathy S., and Steinberg D. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci USA, 1985, 82,5949−5953.
  109. Rodriguez-Iturbe В., Katiyar V.N., Coello J. Neuraminidase activity and free sialic acid levels inthe serum of patients with acute poststreptococcal glomerulonephritis. N Engl J Med., 1981, 304, 1506−1510.
  110. Roggentin P., Schauer R., Heyer L.L., Vimr E.R. Micro review: The sialidase superfamily and its spread by horisontal gene transfer. Mol Microbiol., 1993,9,915−921.
  111. Romano M., Romano E., Bjorkerud D. and Hurt-Camejo E. Ultrastructural localization of secretory type II phospholipase A2 in atherosclerotic and nonatherosclerotic regions of human arteries. Arterioscler. Thromb. Vase. Biol., 1998, 18,519−525.
  112. Ross R., Harker L. Hyperlipidemia and atherosclerosis. Science, 1976, 193, 1094−1100.
  113. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423), 801−9.
  114. Sartipy P., Johansen В., Camejo G., Rosengren В., Bondjers G. and Hurt-Camejo E. Binding of human phospholipase A2 type II to proteoglycans. Differential effect of glycosaminoglycans on enzyme activity. J. Biol. Chem. 1996,271,26 307−26 314.
  115. Shannon J.S., Lappin T.R., Elder G.E., Roberts G.M., McGeown M.G., Bridges J.M. Increase plasma glycosidase and protease acitivity in uraemia: possible role in the aetiology of the anaemia of chronic renal failure. Clin Chim Acta., 1985, 153, 203−207.
  116. Shen M.M., Krauss R.M., Lindgren F.T. and Forte T.M. Heterogeneity of serum low density lipoproteins in normal human subjects. J. Lipid Res., 1981,22, 236.
  117. Smith C., Mitchinson M.J., Aruoma O.I. and Halliwell B. Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochem. J., 1992, 286, 901−905.
  118. Smith E., Crosbie L. and Carey S. Prothrombin-related antigens in human aortic intima. Semin. Thromb. Hemost., 1996, 22, 347−350.
  119. Smith E.B. The relationship between plasma and tissue lipids in human atherosclerosis. Adv Lipid Res., 1974, 12, 1−49.
  120. Steinberg D., Parthasarathy S., Carew Т.Е., Khoo J.C., and Witztum J.L. ф Beyond cholesterol: modifications of low-density lipoprotein that increaseits atherogenicity. N Engl J Med., 1989, 320, 915−924.
  121. Suits A.G., Chait A., Aviram M. and Heinecke J.W. Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation. Proc. Natl. Acad. Sci. USA, 1989, 86, 2713−2717.
  122. Sukhova G.K., Shi G.P., Simon D.I., Chapman H.A. and Libby P. Expression of the elastolytic cathepsins S and К in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest., 1998, 102, 576−583.
  123. Suzuki Т., Kitajima K., Inoue S., Inoue Y. Occurrence and biological roles of «proximal glycanases» in animal cells. Glycobiology, 1994, 4, 777−789.
  124. Swain J. and Gutteridge J.M. Prooxidant iron and copper, with ferroxidase and xanthine oxidase activities in human atherosclerotic material. FEBS Lett. 1995,368,513−515.
  125. Taniguchi Т., Ishikawa Y., Tsunemitsu M., Fukuzaki H. The structures of asparagine-linked sugar chains of human apolipoprotein B-100. Arch Bichem Biophys., 1989, 273, 197−205.
  126. Tertov V.V., Sobenin I.A., Gabbasov Z.A., Popov E.G., Orekhov A.N. Lipoprotein aggregation as an essential condition of intracellular lipid caused by modified low density lipoproteins. Biochem Biophys Res Commun., 1989, 163,489.
  127. Tertov V.V., Kaplun V.V., Orekhov A.N. In vivo oxidized low density lipoprotein: degree of lipoprotein oxidation does not correlate with its atherogenic properties. Mol Cell Biochem., 1998, 183, 141−146.
  128. Vanderyse L., Devreese A.M., Baert J., Vanloo В., Lins L., Ruysschaert J.M. and Rosseneu M. Structural and functional properties of apolipoprotein В in chemically modified low density lipoproteins. Atherosclerosis., 1992, 97, 187−199.
  129. Vauhkonen M., Viitala J., Parkkinen J., Rauvala H. High-mannose structures of apolipoprotein-B from low density lipoproteins of human plasma. Eur J Biochem., 1985, 15, 43−50.
  130. Vedie В., Myara I., Pech M.A., Maziere J.C., Maziere C., Caprani A., Moatti N. Fractionation of charge-modified low density lipoproteins by fast protein liquid chromatography. J. Lipid Res., 1991, 32, 1359.
  131. Venerando В., Fiorilli A., Croci G.L., Tettamanti G. Presence in human erythrocyte membraines of a novel form of sialidase acting optimall at neutral pH. Blood, 1997, 90, 2047−2056.
  132. Wang L.J., Lee T.S., Lee F.Y., Pai R.C. and Chau L.Y. Expression of heme oxygenase-1 in atherosclerotic lesions. Am. J. Pathol., 1998, 152, 711−720.
  133. Warren L. The Thiobarbituric Acid Assay of Sialic Acids J. Biol. Chem., 1959, 234,1971 1975.
  134. Willcox P., Renwick G.C. Effect of neuraminidase on the chromatographic behavior of eleven acid hydrolases from human liver and plasma. Eur J Biochem., 1977, 73, 579−590.
  135. Wissler R.W., Vesselinovitch D., Getz G.S. Abnormalities of arthererial wall and its metabolism in atherogenesis. Prog Cardiovasc Dis., 1976, 18, 341−352.
  136. Xu X.X. and Tabas I. Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages. J. Biol. Chem., 1991, 266, 24 849 24 858.
  137. Yagi К. Assay for blood plasma or serum. Methods Enzymol., 1984, 105, 328−31.
  138. Yla-Herttuala S., Palinski W., Butler S.W. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscl. Thrombosis, 1994, 14, 32−40.
Заполнить форму текущей работой