Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

Роль фосфолипазы Π‘ ? Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала, запускаСмого ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ роста

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ сигнала — ΠΎΠ΄Π½Π° ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π±Ρ‹ΡΡ‚Ρ€ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ областСй соврСмСнной ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. Под ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ΠΉ сигнала ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ события, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ происходят Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСйствия Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΡƒ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² (Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² роста, Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ², Π½Π΅ΠΉΡ€ΠΎΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ²) ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ — ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅, Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • 1. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅
  • 2. Π›ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΠΎΠ±Π·ΠΎΡ€
    • 2. 1. Π€Π›Π‘Ρƒ1 — участник основных ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссов
    • 2. 2. БСмСйство фосфолипаз Π‘
    • 2. 3. ΠœΠΎΠ΄ΡƒΠ»ΡŒΠ½Π°Ρ тСория провСдСния ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ сигнала
    • 2. 4. ДомСнная структура фосфолипаз Π‘
    • 2. 5. ВзаимодСйствиС Π€Π›Π‘Ρƒ1 с ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π°ΠΌΠΈ
    • 2. 6. ЀосфорилированиС ΠΏΠΎ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Ρƒ ΠΈ Π°ΠΊΡ‚ивация Π€Π›Π‘Ρƒ
    • 2. 7. ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала, запускаСмого
  • Π­Π€Π  ΠΈ ΠΈΡ… ΠΏΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΡ
    • 2. 8. УчастиС цитоскСлСта Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала
    • 2. 9. НСгативная рСгуляция ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
  • 3. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 3. 1. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π»ΠΈΠ½ΠΈΠΈ ΠΈ ΠΈΡ… ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
    • 3. 2. АнтитСла
    • 3. 3. Π˜ΠΌΠΌΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ ΠΈ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ±Π»ΠΎΡ‚ΠΈΠ½Π³
    • 3. 4. Π˜Π½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·
    • 3. 5. Π˜ΠΌΠΌΡƒΠ½ΠΎΡ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·
    • 3. 6. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
    • 3. 7. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ протСасом
    • 3. 8. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ активности протСасом
    • 3. 9. ΠŸΠ΅ΠΏΡ‚ΠΈΠ΄Π½ΠΎΠ΅ ΠΊΠ°Ρ€Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅
    • 3. 10. ЭлСктронномикроскопичСская иммуноцитохимия
  • 4. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹
    • 4. 1. Π€Π›Π‘Ρƒ1 Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ Π­Π€Π 
    • 4. 2. Π›Π°Ρ‚Π΅Π½Ρ‚Π½Ρ‹Π΅ комплСксы ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²
    • 4. 3. РСгуляция Π€Π›Π‘Ρƒ1 Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ провСдСния сигнала, запускаСмого Π­Π€Π 
      • 4. 3. 1. Π€Π›Π‘Ρƒ1 ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ комплСксы с Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π 
      • 4. 3. 2. Π€Π›Π‘Ρƒ1 ассоциируСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹ΠΌ, Π½ΠΎ ΠΈ Ρ ΠΈΠ½Ρ‚Π΅Ρ€Π½Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π 
      • 4. 3. 3. ДСйствиС Π­Π€Π  ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠ΅Ρ€Π΅Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π€Π›Π‘Ρƒ Π½Π° ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹
      • 4. 3. 4. Π€Π›Π‘Ρƒ1 рСгулируСтся с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ протСасом Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… 90 — 92 А
    • 4. 4. Π‘Π΅Π»ΠΎΠΊ Ρ€Π±Π± — протСолитичСский Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Π€Π›Π‘Ρƒ
    • 4. 5. ИзмСнСния протСасом ΠΏΡ€ΠΈ дСйствии Π­Π€Π 
      • 4. 5. 1. ИзмСнСниС ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ состава протСасом ΠΏΡ€ΠΈ дСйствии Π­Π€Π 
      • 4. 5. 2. ДСйствиС Π­Π€Π  Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ протСасом
      • 4. 5. 3. ДСйствиС Π­Π€Π  Π½Π° Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ распрСдСлСниС протСасом
    • 4. 6. ВзаимодСйствиС Π€Π›Π‘Ρƒ1 с ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ цитоскСлСта
      • 4. 6. 1. Π€Π›Π‘Ρƒ1 ассоциируСтся с Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌ
      • 4. 6. 2. ВлияниС Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности Π€Π›Π‘Ρƒ1 Π½Π° ΡΠΎΡΡ‚ояниС Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта
      • 4. 6. 3. Π€Π›Π‘Ρƒ1 ассоциируСтся с ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А
  • 5. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅
    • 5. 1. Π€Π›Π‘Ρƒ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π­Π€Π 
    • 5. 2. РСгуляция Π€Π›Π‘Ρƒ1 Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ провСдСния сигнала, запускаСмого Π­Π€Π 
      • 5. 2. 1. Π€Π›Π‘Ρƒ1 взаимодСйствуСт с Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ Π­Π€Π 
      • 5. 2. 2. ДСйствиС Π­Π€Π  ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ‚ранслокации Π€Π›Π‘Ρƒ1 Π½Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρƒ
      • 5. 2. 3. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции Π€Π›Π‘Ρƒ
    • 5. 3. ΠŸΡ€ΠΎΡ‚Π΅Π°ΡΠΎΠΌΡ‹ — Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала, запускаСмого Π­Π€Π 

Роль фосфолипазы Π‘ ? Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала, запускаСмого ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ роста (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ сигнала — ΠΎΠ΄Π½Π° ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π±Ρ‹ΡΡ‚Ρ€ΠΎ Ρ€Π°Π·Π²ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ…ΡΡ областСй соврСмСнной ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ. Под ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡Π΅ΠΉ сигнала ΠΏΠΎΠ½ΠΈΠΌΠ°ΡŽΡ‚ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ события, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ происходят Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСйствия Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΡƒ Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² (Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² роста, Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², Π³ΠΎΡ€ΠΌΠΎΠ½ΠΎΠ², Π½Π΅ΠΉΡ€ΠΎΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ²) ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ — ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅, Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Ρƒ. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ Π½Π° Π²Π½Π΅ΡˆΠ½ΠΈΠ΅ сигналы обСспСчиваСт ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. МногиС Π±ΠΎΠ»Π΅Π·Π½ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ способности ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ Π½Π° ΡΠΈΠ³Π½Π°Π»Ρ‹. Π’Π°ΠΊ, извСстно, Ρ‡Ρ‚ΠΎ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ выходят ΠΈΠ·-ΠΏΠΎΠ΄ контроля ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΈ Π½Π΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ся дСйствиСм Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ².

ΠšΠ»ΡŽΡ‡Π΅Π²ΠΎΠΉ этап Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала, запускаСмого Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ роста — активация ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈ дСйствии Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² (Никольский ΠΈ Π΄Ρ€., 1987). АктивированныС ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ ΡΠ²Π»ΡΡŽΡ‚ΡΡ стартовыми Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ каскадов Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… взаимодСйствий с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», приводящих ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π° ΡΠΈΠ³Π½Π°Π» (Cadena, Gill, 1992; Schlessinger, Ullrich, 1992).

ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² являСтся фосфорилированиС аминокислотных остатков Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π°, располоТСнных Π² Ρ†ΠΈΡ‚оплазматичСском Π΄ΠΎΠΌΠ΅Π½Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° (Schlessinger, Ullrich, 1992). Π’ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΎΠ²ΠΎΠ΅ фосфорилированиС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² осущСствляСтся Π»ΠΈΠ±ΠΎ Π·Π° ΡΡ‡Π΅Ρ‚ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ активности самого Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ для Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² роста, Π»ΠΈΠ±ΠΎ Π·Π° ΡΡ‡Π΅Ρ‚ цитоплазматичСских Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² ΡΠ»ΡƒΡ‡Π°Π΅ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ².

Cadena, Gill, 1992). ПоявлСниС фосфорилированных Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΎΠ² Π² ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² создаСт сайты, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΡ€ΠΈΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‚ΡΡ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, содСрТащиС 8Н2-Π΄ΠΎΠΌΠ΅Π½Ρ‹ (Pawson, 1995). ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ комплСксов Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² с ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ обСспСчиваСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ для Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Ρ‹ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ.

Основная Π½Π΅Ρ€Π΅ΡˆΠ΅Π½Π½Π°Ρ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ сигнала — ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ событий, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Ρ‚ΠΎΡ‚ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π° ΡΠΈΠ³Π½Π°Π» (ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ, остановку роста, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²ΠΊΠ΅, Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·). ВыказываСтся ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π±ΠΎΡ€ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° зависит Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΎΡ‚ ΡΡ‚Π°ΠΏΠ° ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ нСпосрСдствСнно Π·Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ΠΌ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ — субстратами Π΅Π³ΠΎ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ активности.

Одним ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ извСстных ΠΈ ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ врСмя ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², нСпосрСдствСнно ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ с Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈ ΡΠ²Π»ΡΡŽΡ‰ΠΈΠΌΡΡ субстратом Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ активности Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ², являСтся фосфоинозитид-спСцифичСская фосфолипаза Π‘Ρƒ1 (Π€Π›Π‘Ρƒ1) -Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ фосфоинозитидного ΠΎΠ±ΠΌΠ΅Π½Π° (Rhee, 1991).

ΠšΠ»ΡŽΡ‡Π΅Π²Π°Ρ Ρ€ΠΎΠ»ΡŒ Π€Π›Π‘Ρƒ1 Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… процСссах опрСдСляСтся Π΅Π΅ ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ€Π°Π½Π½Π΅ΠΌ ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… сигналов (Margolis et al., 1989). НСсмотря Π½Π° ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ΅ количСство ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… вопросы, связанныС с ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌΠΈ рСгуляции Π€Π›Π‘Ρƒ1 ΠΈ Π΅Π΅ ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала Π΄Π°Π»Π΅ΠΊΠΈ ΠΎΡ‚ Π²Ρ‹ΡΡΠ½Π΅Π½ΠΈΡ. Π’Ρ€ΡƒΠ΄Π½ΠΎΡΡ‚ΡŒ опрСдСлСния Ρ€ΠΎΠ»ΠΈ Π€Π›Π‘Ρƒ1 Π² ΠΏΡ€ΠΎΡ†Π΅ΡΡΠ΅ провСдСния сигнала опрСдСляСтся Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ Π΅Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ. Π€Π›Π‘Ρƒ1 Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·ΡƒΠ΅Ρ‚ ΠΌΠΈΠ½ΠΎΡ€Π½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ фосфоинозитид-4,5-бисфосфат с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈΠ½ΠΎΠ·ΠΈΡ‚ΠΈΠ΄-3.4.5-трисфосфата ΠΈ Π΄ΠΈΠ°Ρ†ΠΈΠ»Π³Π»ΠΈΡ†Π΅Ρ€ΠΈΠ½Π°, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π²Ρ‹Ρ…ΠΎΠ΄Ρƒ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈΠ· Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π΄Π΅ΠΏΠΎ ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ² сСмСйства ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π· Π‘ (Berridge, 1993). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π€Π›Π‘Ρƒ1 участвуСт Π² Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΠΈ сразу ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ½ΠΎΠ³ΠΈΡ… процСссов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ зависят ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠΎΠ½ΠΎΠ² ΠΊΠ°Π»ΡŒΡ†ΠΈΡ, ΠΎΡ‚ ΡΠ΅Ρ€ΠΌΠ½-Ρ‚Ρ€Π΅ΠΎΠ½ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ фосфорилирования, осущСствляСмого ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π°ΠΌΠΈ Π‘, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ фосфоинозитид-4.5-бисфосфата, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ связаны ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰ΠΈΠΌΠΈ состояниС Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта.

ИсслСдованиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² провСдСния сигнала Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ ослоТняСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ дСйствия ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π»ΠΈΠ³Π°Π½Π΄Π° происходит Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ активация ΠΌΠ½ΠΎΠ³ΠΈΡ… ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… систСм ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π½ΠΎ ΠΈ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠ½Ρ‹Π΅ пСрСсСчСния. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΎΠ΄ΠΈΠ½ ΠΈ Ρ‚ΠΎΡ‚ ΠΆΠ΅ Π»ΠΈΠ³Π°Π½Π΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π­Π€Π  — ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΡŽ, остановку роста ΠΈΠ»ΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡ‚ΡŒ ΡΠΏΠΈΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ (Chen et al., 1994; Noh et al., 1995; Johannessen et al., 1999). ΠŸΡ€ΠΈ этом Π² ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΌ ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΌΠΎΠ³ΡƒΡ‚ ΡƒΡ‡Π°ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ систСмы. На ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ сигнала ΠΌΠΎΠ³ΡƒΡ‚ Π²Π»ΠΈΡΡ‚ΡŒ структурныС ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, ярким ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся цитоскСлСт (van Bergen en Henegouwen et al., 1989; Rijken et al., 1991; 1995).

Π’ ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ основного ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΏΡ€ΠΈ дСйствии Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ². Π›ΡŽΠ±ΠΎΠΉ 8 Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹ΠΉ процСсс ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ€Π΅Π³ΡƒΠ»ΡΡ†ΠΈΡŽ. Для понимания процСсса провСдСния сигнала Π² Ρ†Π΅Π»ΠΎΠΌ, ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ рСгуляции ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Однако Π΄ΠΎ ΡΠΈΡ… ΠΏΠΎΡ€ Π΄Π°Π½Π½Ρ‹Π΅, ΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ процСссов Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции нСмногочислСнны, Π° ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΡ практичСски ΠΎΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚. Вопрос ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции Π€Π›Π‘Ρƒ1 Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ поднимался Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ (Meisenhelger et al., 1989; Rhee, Choi, 1992; Lee, Rhee, 1995). Π—Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ этой ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ опрСдСляСтся Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ участиСм Π€Π›Π‘Ρƒ1 Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала, Π½ΠΎ ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ провСдСния сигнала Π² Ρ‚рансформированных ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ…. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Π°Ρ экспрСссия Π€Π›Π‘Ρƒ1 являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² высокотрансформированных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… состояниС Π€Π›Π‘Ρƒ1, Π² Ρ‚ΠΎΠΌ числС Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, прСдставляСтся Π²Π°ΠΆΠ½Ρ‹ΠΌ для понимания ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² нСопластичСской трансформации ΠΊΠ»Π΅Ρ‚ΠΎΠΊ.

Π’Π«Π’ΠžΠ”Π«.

1. НСгативная рСгуляция Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π­Π€Π  происходит с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ Π€Π›Π‘Ρƒ.

2. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Π»Π°Ρ‚Π΅Π½Ρ‚Π½Ρ‹Π΅ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ комплСксы, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ нСфосфорилированными ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ. ΠžΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π»Π°Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… комплСксов ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² слуТит, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ рСгулятора, удСрТивая ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ ΠΎΡ‚ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚вия с Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠ»ΠΈ цитоплазматичСскими Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π°ΠΌΠΈ.

3. ДСйствиС Π­Π€Π  Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ комплСксов Π€Π›Π‘Ρƒ1 с Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π . Π€Π›Π‘Ρƒ1 ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ комплСксы с ΠΈΠ½Ρ‚Π΅Ρ€Π½Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π . Π˜Π½Ρ‚Π΅Ρ€Π½Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ Π­Π€Π  ΠΌΠΎΠ³ΡƒΡ‚ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ стартовыми Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ провСдСния сигнала.

4. НСгативная рСгуляция Π€Π›Π‘Ρƒ1 происходит ΠΏΠΎ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-протСасомному ΠΏΡƒΡ‚ΠΈ. ДСйствиС Π­Π€Π  ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½ΠΈΡŽ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½ΠΈΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π€Π›Π‘Ρƒ1. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ Π±Π΅Π»ΠΎΠΊ Ρ€Π±Π±, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ являСтся ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ протСолитичСским Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠΌ Π€Π›Π‘Ρƒ1, ΡΠΎΡ…Ρ€Π°Π½ΡΡŽΡ‰ΠΈΠΌ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΊ ΡΠ²ΡΠ·Ρ‹Π²Π°Π½ΠΈΡŽ с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π .

5. ДСйствиС Π­Π€Π  Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ, ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ состава ΠΈ Π°ΠΊΡ‚ивности протСасом. Π’Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ распрСдСлСниС протСасом зависит ΠΎΡ‚ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ активности Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π­Π€Π ,.

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅

.

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΡŽ провСдСния сигнала, запускаСмого Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ роста, посвящСно мноТСство ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚. ΠšΠ»ΡŽΡ‡Π΅Π²ΠΎΠ΅ событиС провСдСния сигнала, запускаСмого ЭЀРактивация Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² Π­Π€Π  ΠΈ ΠΈΡ… Π°Π²Ρ‚офосфорилированиС, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π·Π°ΠΏΡƒΡΠΊΡƒ мноТСствСнных ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… каскадов Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π½Π°ΠΌΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π€Π›Π‘Ρƒ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала, запускаСмого Π­Π€Π , ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ с ΡƒΡ‡Π°ΡΡ‚ΠΈΠ΅ΠΌ этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° рСгулируСтся Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π° Π­Π€Π , Π° ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ сигнала Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅.

ΠžΠ±Ρ‹Ρ‡Π½ΠΎ, ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ процСсса ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ сигнала ΠΈΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² ΠΏΡ€ΠΈ дСйствии Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ². АктивированныС Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Ρ‹ Π­Π€Π  ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ комплСксы с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ, субстратами ΠΈΡ… Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π½ΠΎΠΉ активности, ΠΈ Ρ„ΠΎΡΡ„ΠΎΡ€ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΈΡ… ΠΏΠΎ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Ρƒ.

ИсслСдованиС Ρ€ΠΎΠ»ΠΈ Π€Π›Π‘Ρƒ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° ΡΡ‚ΠΎΠ»ΡŒ ΠΆΠ΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ для процСсса провСдСния сигнала, ΠΊΠ°ΠΊ ΠΈ ΠΏΡ€ΠΎΡ†Π΅ΡΡΡ‹ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ.

НСгативная рСгуляция Π€Π›Π‘Ρƒ обСспСчиваСтся Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ процСссами. ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΎ сущСствованиС Π»Π°Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… комплСксов, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ вСроятная функция ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ…ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ взаимодСйствия ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² с Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈΠ»ΠΈ цитоплазматичСскими Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½ΠΊΠΈΠ½Π°Π·Π°ΠΌΠΈ. Π€Π›Π‘Ρƒ ассоциируСтся с ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ цитоскСлСта: ΠΌΠΈΠΊΡ€ΠΎΡ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ ΠΈ Ρ†ΠΈΡ‚ΠΎΠΊΠ΅Ρ€Π°Ρ‚ΠΈΠ½ΠΎΠ²Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹ΠΌΠΈ Ρ„ΠΈΠ»Π°ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции Π€Π›Π‘Ρƒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ для Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΡΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ… цитоскСлСта Π±Π΅Π»ΠΊΠ° нСдоступСн субстрат Π΅Π΅ Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ активности — PIP2. ΠšΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции Π€Π›Π‘Ρƒ являСтся обнаруТСнная Π½Π°ΠΌΠΈ протСасом-зависимая дСградация этого Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°. И, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, выявлСнный протСолитичСский Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ Π€Π›Π‘Ρƒ — Π±Π΅Π»ΠΎΠΊ Ρ€Π±Π±, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ способСн ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ комплСксов с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π , Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ рСгулятора Π€Π›Π‘Ρƒ.

ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ являСтся Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ способности ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ ростовых Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠšΠ»Π΅Ρ‚ΠΊΠΈ А-431 — высокотрансформмрованная клСточная линия, ΠΏΠΎ Ρ€ΡΠ΄Ρƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², Π² Ρ‡Π°ΡΡ‚ности, способности ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ Π­Π€Π  сходны с Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ. Наши Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Ρ€Ρ‚Ρ‹ фСнотипичСской Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ А-431 ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π€Π›Π‘Ρƒ1.

Π’ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ многочислСнныС Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ СстСствСнного происхоТдСния характСризуСтся ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ экспрСссиСй Π€Π›Π‘Ρƒ (Artega et al., 1991; Noh et al., 1998). Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ экспрСссии Π€Π›Π‘Ρƒ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ рСгулируСтся ΠΏΠΎ ΡƒΠ±ΠΈΠΊΠ²ΠΈΡ‚ΠΈΠ½-протСасомному ΠΏΡƒΡ‚ΠΈ. МоТно ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ нСгативная рСгуляция Π€Π›Π‘Ρƒ ΠΈΠ³Ρ€Π°Π΅Ρ‚ Ρ€ΠΎΠ»ΡŒ Π² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ способности трансформированных ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΊ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅ ростовых Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ².

ΠžΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠ΅ Π½Π°ΠΌΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ активности, ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‡Π½ΠΎΠ³ΠΎ состава ΠΈ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ протСасом ΠΏΡ€ΠΈ дСйствии Π­Π€Π  позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΈΡ… ΠΊΠ°ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ провСдСния сигнала. Наши ΠΈ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ Π²Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚ΡŒ Π³ΠΈΠΏΠΎΡ‚Π΅Π·Ρƒ, Ρ‡Ρ‚ΠΎ дСйствиС Π²Π½Π΅ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π»ΠΈΠ³Π°Π½Π΄ΠΎΠ² ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ с ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΌΠΈ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ каскадами приводящими ΠΊ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ», запускаСт ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡ‚Π²Π΅Π½Π½Ρ‹Π΅ процСссы ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ рСгуляции.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. А. Π”., Π‘ΠΎΠΊΠΎΠ»ΠΎΠ²Π° И. П., ΠšΠΎΡ€Π½ΠΈΠ»ΠΎΠ²Π° Π•. Π‘., Никольский Н. Н. 1994. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ эндоцитоза Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ² ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста ΠΎΡ‚ ΡΡ‚Π΅ΠΏΠ΅Π½ΠΈ занятости Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠ². Цитология. 36(7): 664−674.
  2. Π•. Π‘., ВасилСнко К. П., ВСслСнко П. Π’., Никольский Н. Н.1996. Активация транскрипционного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Ρ€91 ΠΈΠ½Ρ‚Π΅Ρ€Π½Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А-43! ДАН РАН, 346: 833−835.
  3. К. П., Π‘ΡƒΡ€ΠΎΠ²Π° Π•. Π‘., Π¦ΡƒΠΏΠΊΠΈΠ½Π° Н. Π’., Никольский Н. Н. 1998. Π˜Π½Ρ‚Π°ΠΊΡ‚Π½Π°Ρ ΡΠ΅Ρ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠ° для Π­Π€Π -зависимого транспорта транскрипционного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° STAT1 Π² ΡΠ΄Ρ€ΠΎ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ А-43! Цитология. 40(12): 1063−1069.
  4. К. П., Π‘ΡƒΡ€ΠΎΠ²Π° Π•. Π‘., Π§ΡƒΠΏΡ€Π΅Ρ‚Π° Π‘. Π’., Никольский Н. Н.1997. Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° Π­Π€Π -зависимого ядСрно-цитоплазматичСского пСрСраспрСдСлСния транскипционного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° Statl Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А-43! Цитология. 39(2/3): 152−160.
  5. И. Π‘., Π‘ΡƒΡ€ΠΎΠ²Π° Π•. Π‘., ΠšΠΎΡ€Π½ΠΈΠ»ΠΎΠ²Π° Π•. Π‘., Никольский Н. Н. 1993. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ€Π°Π½Π½Π΅Π³ΠΎ ΠΈ ΠΏΠΎΠ·Π΄Π½Π΅Π³ΠΎ эндоцитоза ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А-43! Цитология. 35(2): 60−67.
  6. Π’. Π­., Π’ΡƒΡ€ΠΎΠ²Π΅Ρ€ΠΎΠ²Π° Π›. Π’., ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚ΠΈΠ½ΠΎΠ²Π° И. М., ПинаСв Π“. П. 1998. ВзаимодСйствиС просом с Ρ„ибриллярным Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌ. Цитология. 40(2−3): 161−166.
  7. Π’. Π­., Π’ΡƒΡ€ΠΎΠ²Π΅Ρ€ΠΎΠ²Π° Π›. Π’., ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚ΠΈΠ½ΠΎΠ²Π° И. М., ПинаСв Π“. П. 1998. 26S Ρ€ΠΈΠ±ΠΎΠ½ΡƒΠΊΠΏΠ΅ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ комплСкс (26S протСасома) нСпосрСдствСнно взаимодСйствуСт с Ρ„ибриллярным Π°ΠΊΡ‚ΠΈΠ½ΠΎΠΌ. Цитология. 40(7): 618−626.
  8. А. Π›. 1998. Π‘Π΅Π»ΠΊΠΈ сСмСйства STAT: Ρ€ΠΎΠ»ΡŒ Π² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ сигнала. Цитология. 40(12): 1053−1062.
  9. И.М., Π’Π΅Ρ‚Ρ†ΠΊΠ΅Ρ€ Π ., Π‘ΡƒΡ€ΠΎΠ²Π° Π•. Π’., ВасилСнко К. П., Иванов Π’. А., Π’ΡƒΡ€ΠΎΠ²Π΅Ρ€ΠΎΠ²Π° Π›. Π’. ВСслСнко П.Π’., Никольский Н. Н. 1998. Π­Π€Π -зависимая ассоциация 20S протСасом ΠΈ ΡΠΏΠ΅Ρ†ΠΈΡ„ичСских РНП с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ Π­Π€Π  Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А-431. Цитология 40(11): 954−957.
  10. И.М., ΠšΡƒΠ»ΠΈΡ‡ΠΊΠΎΠ²Π° Π’. А., Π’ΡƒΡ€ΠΎΠ²Π΅Ρ€ΠΎΠ²Π° Π›. Π’. ΠŸΠ΅Ρ‚ΡƒΡ…ΠΎΠ²Π° О. А., ΠšΠΎΠΆΡƒΡ…Π°Ρ€ΠΎΠ²Π° И. Π’., ВСслСнко Π›. Π’. 1994. Π­ΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ роста Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ спСцифичСскиС измСнСния экспрСссии ΠΌΠ°Π»Ρ‹Ρ… РНК ΠΈ Π½Π°Π±ΠΎΡ€Π° ΠΌΠ°Π»Ρ‹Ρ… РНП Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А-431. Цитология 36(2): 174−181.
  11. Π•. Π‘., Π‘ΠΎΡ€ΠΊΠΈΠ½ А. Π”., Никольский Н. Н. 1987. Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΊΠΎΠΌΠΏΠ°Ρ€Ρ‚ΠΌΠ΅Π½Ρ‚Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΡΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° роста Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… А-431. Цитология. 29(8): 904−910.
  12. Н. Н. 1998. Stat-ΠΏΡƒΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ сигнализации. Цитология. 40(12): 1050−1052.
  13. Н. Н., Π‘ΠΎΡ€ΠΊΠΈΠ½ А. Π”., Π‘ΠΎΡ€ΠΎΠΊΠΈΠ½ А. Π‘. 1987. Π­ΠΏΠΈΠ΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ роста. Π›. Наука. 200с.
  14. А. Π‘., ВСслСнко Π›. Π’., Никольский Н. Н. 1989. Π Π΅Ρ†ΠΈΠΊΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π­Π€Π -Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€Π½Ρ‹Ρ… комплСксов. Цитология. 31(3): 300−311.
  15. Ahn S. J., Han S. J., Mo H. J., Chung J. K., Hong S. H., Park Π’. K, Kim Π‘ .G. 1998. Interaction of phospholipase Π‘ gammal via its COOH-terminal SRC homology 2 domain with synaptojanin. Biochem. Biophys. Res. Commun. 244: 62−67.
  16. Aki M., Schimbara N., Takashina M., Akiyama K., Kayawa S., Tamura Π’., Tanahashi N., Yoshimura Π’., Tanaka K, Ichihara A. 1994. Interferon-gamma induces different subunit organization and functional diversity of proteasomes. J. Biochem. 115: 257−269.
  17. M., Heidarau M.A., Gutkind J.S., Zhang J., Ellmore N., Valius M., Kazlauskas A., Pierce J.N. 1997. PLCy activation is required for PDGF-R mitogenesis and monocytic differentiation of myeloid progenitor cells. Oncogene. 15: 585−589.
  18. Amano M., Mukai H., Ono Y., Chichara K., Matsui Π’., Hamajiama Y., Okawa Π’., Iwamoto A., Kaibuchi K. 1996. Identification of putative target of rho as the serine-threonine kinase protein kinase N. Science. 271: 648−650.
  19. D., Koch C. A., Grey L., Ellis Π‘., Moran M. F., Pawson T. 1990. Binding of SH2 domains of phospholipase Π‘ gamma 1, GAP and Src to activated growth factor receptors. Science. 250: 979−982.
  20. Aravid L, Pontig C.P. 1998. Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Sci 7: 1250−1254.
  21. Are A.F., Galkin V. E., Pospelova Π’., Pinaev G. 2000. The p65/Rel subunit of NF-kB interacts with actin-containing structures. Exp. Cell. Res. 256: 533−544.
  22. A. P., Simon J. M., Spahr P. F. 1987. A 20S particle ubiquitos from yast to human. J. Mol. Evol. 25: 141−150.
  23. Artega K. L., Johnson M. D" Toddorodo G., Caffey R. G., Carpenter G., Page D. L. 1991. Elevated content of the tyrosine kinase substrate phospholipase Cy1 in the primary human breast carcinomas. Proc. Natl. Acad. Sci. USA. 88: 10 435−10 439.
  24. Baass P. C., deGuglielmo G. M., Auther F., Posner Π’. I., Bergeron J. J. M. 1995. Compartmentalized signal trunsduction by receptor tyrosine kinases. Trends Cell Biol. 5: 465−470.
  25. Bae S. S., Lee Y. H., Chang J. S., Galadari S. H., Kim Y. S., Ryu S. H., Suh P. G. 1998b. Src homology domains of phospholipase Π‘ gamma 1 inhibit nerve growth factor-induced differentiation of PC12 cells. J. Neurochem. 71: 178−185.
  26. Bae Y. S., Cantley L. G., Chen C.S., Kim S. R., Kwon K. S., Rhee S.-G. 1998a. Activation of phospholipase Π‘ gamma by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273: 44 654 469.
  27. Bae Y.S., Sung J.Y., Kim K.J., Hur K.C., Kazlauskas A., Rhee S.G. 2000. Platelet-derived growth factor-induced H202 production requires activation of phosphatydylinositol 3kinase. J. Biol. Chem. 275: 10 527−10 531.
  28. Baribault H., Bloin R., Bourgon L, Marceau N. 1989. Epidermal growth factor induced selective phosphorylation of cultured rathepatocyte 55-kDa cytokeratin before filament reorganization and DNA synthesis. J. Cell. Biol. 109: 1665−1676.
  29. V., Schwartz M. 2000. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor. J. Biol. Chem. 275: 39 318−39 323.
  30. Barrett W.C., DeGuore J.P., Keng Y.-F., Zhang Zh.-Y., Yim M.B., Boon Chock P. 1999. Roles of superoxide radical anions in signal transduction mediated by reversible regulation of protein- tyrosine phosphatase 1B. J. Biol. Chem. 274: 34 543−34 546.
  31. Bar-Sagi D., Rotin D., BatzerA., Mandian V., Schlessinger J. 1993. SH3 domains direct cellular localization of signaling molecules. Cell. 74: 83−91. .
  32. W., Walz J., Zuhl F., Seemuller E. 1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 92: 367−380.
  33. M. C., Abolafi Ch. M., Thompson J. F. 1997. Cytoskeletal association of epidermal growth factor receptor and signaling proteins is regulated by cell density in IEC-6 intestinal cells. J. Cell. Physiol. 172: 126−136.
  34. M. J. 1993. Inositol triphosphate and calcium signaling. Nature. 361: 315−325.
  35. Berryman M, Franck Z, Bretscher A. 1993 Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci. 105 (Pt4): 1025−1043.
  36. A., Chausovsky A., Becker E., Lyubimova A., Geiger B. 1996. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr.Biol. 6: 1279−1289
  37. U. S., Ivengar R. 1999. Emergent properties of networks of biological signaling pathways. Science. 283: 381−387.
  38. Blagosklonny M.V., Wu G.S., Omura S., el-Deiry W.S. 1996. Proteasome-dependent regulation of p21 WAF1/Cip1 expresson. Biochem. Biophys. Res. Commun. 227: 564−569.
  39. Boonstra J., van Maurik P., Verklen.A.J. Immunological labelling of cryosections and cryofractions. In: Cryotechniques in biological electron microscopy. Springer-Verlag Berlin Heidelberg. 1987. 216 230
  40. M. M. 1976. A rapid and sensetive method for the quantitation of micrigram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248−254.
  41. A. 1989. Rapid phosphorylation and reorganisation of ezrin and spectrin accompaning morphological changes induced in A-431 cells by epidermal growth factor. J. Cell. Biol. 108: 921−930.
  42. Briane D., Oliun-Coux M., VassyJ., OndarO., Huesca M., Scherrer K., FoucrierJ. 1992. Immunolocalization of specific types of prosomes close to bile canaliculi in fetal and rat liver. Eur. J. Cell. Biol. 57: 30−39.
  43. P., Fuertes G., Murray R.Z., Knecht E., Rechsteiner M.C., Hendil K.B., Tanaka K., Dyson J., Rivett J. 2000. Subcellular localization of proteasomees and their regulatory complexes in mammalian cells. Biochem J. 346: 155−161.
  44. Bureau J. P., Henry L, Baz A., Scherre k., Chateau M. 1997. Prosomes (proteasomes) changes during differentiation are related to the type of inducer. Mol. Biol. Rep. 25: 57−62.
  45. D., Gill G. N. 1992. Receptor tyrosine kinases. FASEB J. 6: 2332−2337.
  46. L. C., Auger K. R., Carpenter C., Duckworth Π’., Graziani A., Kapeller R., Soltoff S. 1991. Oncogenes and signal transduction. Cell. 64: 281−302.
  47. C.L., Cantley L.C. 1996. Phosphoinositide 3-kinase and the regulation of cell growth. Biochem Biophys. Acta 1288: 1411−1416.
  48. G. 1992. Receptor tyrosine kinases: src homolgy domains and signal transduction. FASEB J. 6: 3283−3289.
  49. Carraway K. L, Carraway Π‘. A. C. 1995. Signaling, mitogenesis and the cytoskeleton: where the action is. BioEssays. 18: 171−175.
  50. R. J., Zheng Y. 1996. Dbl family of oncogenes. Curr. Opin. Cell. Biol. 8: 216−222.
  51. Chang J. S., Noh D. Y., Park I. A., Kim M. J., Song H., Ryu S. H., Suh P. G. 1997. Overexpression of phospholipase C-gamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57: 5465−5468.
  52. M. D. 1992. Growth factor signaling. Where the specificity is? Cell. 68: 995−997.
  53. Chardin P., Camonis J. H., Gale N. IN. Aelst L. V., Schlessinger J., Wigler M. H., Bar-Sagi D. 1993. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.Science. 260: 1338−1343.
  54. Chen Ph., Xie H., Wells A. 1996. Mitogenic signaling from the egf receptor is attenuated by a phospholipase Π‘ gamma /protein kinase Π‘ feedback mechanism. Mol. Biol. Cell. 6: 871−881.
  55. Chen R. H., Corban-Garcia S., Bar-Sagi D. 1997. The role of PH domain in the signal-dependent membrane targeting of sos. EMBO J., 16: 1351−1359.
  56. Chong L. D., Traynor-Kaplan A., Bokoh G. M., Schwartz M. A. 1994. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5 kinase in mammalian cells. Cell. 79: 507−513.
  57. A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell. 79: 13−21.
  58. M. E., Delaney Π’., Rebecohi N. J. 1994. D-myo-inositol 1,4,5-trisphosphates inhibits binding of phospholipase Π‘ to bilayer membranes. J. Biol. Chem. 269: 1945−1954.
  59. Cifuentes M.E., Honkanen L, Rebechi M.J. 1993. Proteolytic fragments of phosphoinositide-specific phosppholipase C-delta 1. J. Biol. Chem. 268: 11 586−11 593.
  60. Claesson-Welsh L 1994. Platelet-derived growth factor receptor signals. J. Biol. Chem. 269: 32 023−32 026.
  61. J. G., Stern M. Y., Hervitz H. R. 1991. C. elegans cell-signaling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature. 356: 340−344.
  62. Cockroft S., Thomas G. M. H. 1992. Inositol lipid specific phospholipase Π‘ isozymes and their different regulation by receptors. Biochem. J. 288: 1−14
  63. Darnell J.E.Jr. 1997. STAT's and gene regulation. Science. 277: 1630−1635
  64. David M., Petrocoin III E., Benjamin C., Pine R., Weber M.J., Larner A.C. 1995. Requirement for MAP-kinase (ERK2) activity in interferon a and interferon p stimulated gene expression through STAT proteins. Science. 269: 1721−1723.
  65. DeMali K. A., Whieford Π‘. C., Uiug E. Π’., Kazlauskas A. 1997. Platelet-derived growth factor-dependent cellular transformation requires either phospholipase Π‘ y1 or phosphatydylinositol 3 kinase. J. Biol. Chem. 272: 9011−9018.
  66. DeMartino G.N., Slaughter C.A. 1999. The proteasome, a novel protease regulated by a multiple mechanisms. J. Biol. Chem. 274: 22 123−22 126.
  67. Den Hartig J. C., van Bergen en Henegouwen P. M. P., Verkleij A. J., Boonstra J. 1992. The EGF receptor is an actin-binding protein. J. Cell. Biol. 119: 349−355.
  68. L., Young D. F., Goodbourn S., Randall R.E. 1999. The V protein of simian virus 5 inhibits interferon signaling by targeting STAT1 for proteasome-mediated proteolysis. J. Virol. 73: 9928−9933.
  69. N., Irvine R. F. 1995. Phospholipid signaling. Cell. 80: 269 278.
  70. Djaballi K., de Nechaud Π’., Landon F., Portier M. M. 1997. AlphaB crystallin interacts with intermediate filaments in response to stress. J. Cell. Sci. 110: 2759−2769.
  71. Drexler H. C. A. 1997. Activation of cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci USA 94: 855−860.
  72. Drubin D. E., Mulholland J. Zhu Z., Botstein D. 1990. Homology of a yeast actin-binding protein to signal transduction proteins and myosin 1. Nature. 343: 288−290.
  73. W.C., Bennett R.G., Hamel F.G. 1998. Insulin acts intracellular^ on proteasomes through insulin-degrading enzyme. Biochem. Biophys Res. Commun. 244: 390−394.
  74. B.S. 1986. Alteration of the distribution of intermediate filaments in PtK1 cells by acrylamidel 1: effect on organization of cytoplasmic organelles. Cell. Motil. Cytoskeleton. 6: 15−24.
  75. Essen L.-O., Perisic O., Katan M., Wu Y., Roberts M. F., Williams R. L. 1997. Structural mapping of the catalytic mechanism for a mammalian phosphoinositide- specific phospholipase C. Biochemistry. 36: 1704−1718.
  76. M., Logan S. K., Lechto V. P., Baccante G., Lemmon M. A., Schlessinger J. 1998. Activation of phospholipase Cy1 by PI 3kinase-induced PH domain-mediated membrane targeting. EMBO J. 17:414−422.
  77. Fantl W. J., Escobedo J. A., Martin G. A., Turek Ch. W., del Rosario M., McCormic F., Williams L. T. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathway. Cell. 60: 413−423.
  78. FaroutL, Lamare M.C., Cardozo C., Harrison M., Briand Y., Briand M. 2000. Distributions of proteasomes and five proteolytic activities in rat tissues. Arch. Biochem. Biophys. 374: 207−212.
  79. S., Zheu M., Ни P., Ullrich A., Chaudhuri M., White M., Schlessinger J. 1993. SH2 domains exhibit high affinity binding to tyrosine phosphorylated peptides yet also exhibit rapid dissociation and exchange. Mol. Cell. Biol. 13: 1449−1455.
  80. Ferell K., Wilkinson C. R" Dubiel W., Gordon C. 2000. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci. 25: 83−88.
  81. E. H., Charbonneau H., Tomes N.K. 1991. Protein tyrosine phosphatase: a diverse family of intracellular and transmembrane enzymes. Science. 253: 401−406.
  82. FranckZ, Gary R, Bretscher A. 1993 Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. J Cell Sci. 105: 219−231.
  83. Fruman DA, Meyers RE, Cantley LC. 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67: 481−507.
  84. K., Endo Π’., Immamura M., Takenawa T. 1994. a -actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J. Biol. Chem. 269: 1518−1522.
  85. Fukami K, Furuhashi K, Inagaki M., Endo Π’., Hatano S., Takenawa T. 1992. Requirement of phosphatidylinositol 4,5-biphosphate for a-actinin function. Nature. 359: 150−152.
  86. K., Maruyama H., Takagi Y., Gopmi K. 1999. Direct proteasome inhibiton by clasto-lactacystin beta-lactone permits the detection of ubiquitinated p21 (waf1) in ML-1 cells. Biochem. Biophys. Acta 1451: 206−210.
  87. M., Gotoh Y., Nishida E. 1997. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16: 1901−1908.
  88. Gale N.W., Kaplan S., Lowenstein E.J., Schlessinger J., Bar-Sagi D. 1993. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature. 363: 88−92.
  89. Π’., Ayalon O. 1992. Cadherins. Annu. Rev. Cell. Biol. 8: 307−332.
  90. S. D., Maison C. 1996. Integration of intermediate filaments into cellular organelles. Intern. Rev. Cytol. 164: 91−138.
  91. H., Golding M. C., Papperkokj R., Gullick W.J. 1999. Intracellular movement of green fluorescent protein-tagged phosphatydylinositol 3-kinase in response to growth factor signaling. J. Cell. Biol. 146: 869−880.
  92. Goldman R. D, Khuon S., Chon Y. H., Steinert P. M. 1996. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell. Biol. 134: 971−984.
  93. Goldshmidt-Clermont P. L, Kim J. W., Machensky L. M., Rhee S.-G., Pollard T. D. 1991. Regulation of phospholipase Cy1 isozyme by profilin and tyrosine phosphorylation. Science. 251: 1231−1233.
  94. C., Taillandier D., Rechsteiner M. 1999 Assembly of the regulatory complex of 26S proteasome. Mol.Biol.Rep. 26: 15−19.
  95. T.C., Blenis J. 1997. Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases.Oncogene. 14: 1635−1642.
  96. Π’. M. 1996. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 84: 345−357.
  97. G.G., Cook T.A. 1999. Microtubules and signal transduction. Curr. Opin. Cell. Biol. 11: 89−94
  98. Haan S., Kortylewski M., Muller-Esterl W., Heinrich P.C., Schaper F. 2000. Cytoplasmic STAT proteins associate prior to activation. Biochem. J. 345:417−42!
  99. Harlan J.E., Hajduk P.J., Yoon H.S., Fesik S. l/l/. 1994. Pleckstrin himology domains bind to phosphatidilinositrol-4,5-biphosphate. Nature. 371: 168−170.
  100. R. J., Koide H.B., Hemmings B.A. 1993. Pleckstrin domain homology. Nature. 363: 309−310
  101. Haspel R. L., Salditt-Georgieff M., Darnell J. E. Jr. 1996. The rapid inactivation of nuclear tyrosine phosphorylated STAT1 depends upon a protein tyrosine phosphatase. EMBO J. 15: 6262−6268.
  102. Π‘. H. 1991. SH2 domains: elements that control protein interactions during signal transduction. Trends Biol. Sci. 16: 450−452.
  103. Hernandez-Sotomayor S.H., Carpenter G. 1993. Non-catalytic activation of phospholipase C-gamma1 in vitro by epidermal growth factir receptor. Biochem. J. 293: 507−511.
  104. A. 1997. Roles of ubiquitin-mediated proteolysis in eel cycle control. Curr. Opin. Cell. Biol. 8: 788−799.
  105. Hess J. A., Ji Q. S., Carpenter G., Exton J. H. 1998. Analysis of platelet-derived growth factor-induced phospholipase D activation in mouse embryo fibroblasts lacking phospholipase c-gamma1. J. Biol. Chem. 273: 20 517−20 524.
  106. L. 1999. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9: 107−112
  107. C. S., Treisman R. 1995. Transcriptional regulation by extracellular signals: Mechanisms and specificity. Cell. 80: 199−211.
  108. M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30: 405−439.
  109. Hong S. O., Ahn J. Y., Lee C. S., Kang M. S., Ha D. Π’., Tanaka K, Chung Π‘. H. 1994. Tissue-specific expression of the subunits of chick 20S proteasomes. Biochem. Mol. Biol. Int. 32: 723−729.
  110. A. M., Kris R. M., Ullrich A., Schlessinger J. 1989. Evidence that autophosphorylation of solubilized receptor for epidermal growth factor is mediated by intermolecular cross-phosphorylation. Proc. Natl. Acad. Sci. USA. 86: 925−929.
  111. A. M., Schmidt A., Ullrich A., Schlessinger J. 1990. Evidence for epidermal growth factor (EGF) induced intramollecular autophosphorylation of the EGF receptor in living cells. Mol. Cell. Biol. 10:4035−4044.
  112. D. A., Chattopadhyay A., Carpenter G. 1999. The influence of deletion mutations on phospholipase C-gamma 1 activity. Arch. Biochem. Biophys. 361: 149−155.
  113. Horvai A.E., Xu L, Korzus ?, Braid G., Kalafus D., Mullen T.M., Rose D.W., Rosenfeld M.G., Glass Ch.K. 1997. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by Π‘Π’Π  and p300. Proc. Natl. Acad. Sci. USA. 94: 1074−1079.
  114. Hsuan J. J., Tan S. H. 1997. Growth factor-dependent phosphoinositide signaling. Int. J. Biochem. Cell. Biol. 29: 415−435.
  115. S., Mohammadi M., Schlessinger J. 1998. Autoregulation mechanisms in protein-tyrosine kinases. J. Biol. Chem. 273: 1 198 711 990.
  116. Π’., Cooper J. A. 1981. Epidermal growth factor induces rapid tyrosine phosphorilation of proteins in A431 human tumor cells. Cell. 24: 741−752.
  117. M.R., Rhodes M.R., Kirby M.L. 1997. Differential expression of a proteasomal subunit during chick development. Biochem. Biophys. Res. Commun. 234: 216−223.
  118. Hwang S.C., Jhon D.Y., Bae Y.S., Kim J.H., Rhee S.G. 1996. Activation of phospholipase C-gamma by the concerned action of tau proteins and arachidonic acid. J.Biol.Chem.271: 18 342−18 349.
  119. M., Macias M.J., Nigles M., Oschkinat H., Saraste M., Wilmanns M. 1995. Structure of the binding site for inositol phosphate in a PH domain. EMBO J. 14: 4676−4685.
  120. J.N. 1996. STAT’s and MAPK’s obligate or opportunistic partners in signaling. BioEssays. 18: 95−98.
  121. Y., Yendall W.A. 1996. Growth inhibitory concentrations of EGF induce p21(WAF1/CIP1) and alter cell cycle control in squamous carcinoma cells. Oncogene. 12: 2369−2375.
  122. P. A. 1994. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol. 56: 169 191.
  123. P. A., Stossel T. P. 1987. Modulation of gelsolin function by phosphatidylinositol-4,5 biphosphate. Nature. 325: 362−364.
  124. Jeffers M., Taylor G. A., Weidner ΠΊ. M., Omura S., Vande Woude G. F. 1997. Degradation of the Met kinase receptor by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 17: 799−808.
  125. Ji Q. S., Ermini S., Bulida J., Sun F. L, Carpenter G. 1998. Epidermal growth factor signaling and mitogenesis in Plcgl null mouse embryonic fibroblasts. Mol. Biol. Cell. 9: 749−757.
  126. Ji Q-S., Winner G. E., Niswender K. D., Horstman D., Winsdom D., Magnuson M. A., Carpenter G. 1997. Essential role of tyrosine kinase substrate phospholipase Π‘ y1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA. 94: 2999−3003.
  127. G.L., Vaillancourt R.R. 1994. Sequential protein kinase reactions controlling cell growth and differentiation. Curr.Opin. Cell. Biol. 6.: 230−238.
  128. Jones GA, Carpenter G. 1993 The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem. 268: 20 845−20 850.
  129. A., Cooper J. A. 1993. Phosphorylation sites at the C-terminus of the platelet-derived growth factor receptor bind phospholipase Cy. Mol. Biol. Cell. 4: 49−57.
  130. A. 1994. Receptor tyrosine kinases and their targets. Curr. Opin. Genet. Dev. 4: 5−14.
  131. A., Kashishian A., Cooper J. A., Valius M. 1992. GAP and phosphatidyl inositol 3-kinase bind to distinct regions of the platelet-derived growth factor beta subunit. Mol. Cell. Biol. 12: 25 342 544.
  132. Kim H.K., Kim J. W., Zilberstein A., Margolis Π’., Kim J. G., Schlessinger J., Rhee S.-G. 1991. PDGF stimulation of inositol phospholipid hydrolisys requires PLCyl phosphorylation on tyrosine residues 783 and 1254. Cell. 65: 441−453.
  133. Kim M.J., Chang J.S., Park S.K., Hwang J.I., Ryu S.H., Suh P.G. 2000. Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1. Biochemistry. 39: 8674−8682.
  134. Kim Π’.К., Maniatis T. 1996. Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science. 273: 1717−1719.
  135. M. 1999. Intracellular proteplusis. Trends Cell. Biol. 9: M42-M45.
  136. C., Seelig A., Brecht Π’., Henkllin P., Kloetzel P.M., 1996. Functional analysis of eukaryotic 20S proteasome nuclear localization signal. Exp. Cell. Res. 225: 67−74.
  137. C. A., Anderson D., Moran M. F., Ellis R. R., Pawson T. 1991. SH2 and SH3 domains: elements that control interaction of cytoplasmic proteins. Science. 65: 441−453.
  138. Konishi H, Kuroda S, Kikkawa U. 1994 The pleckstrin homology domain of RAC protein kinase associates with the regulatory domain of protein kinase Π‘ zeta. Biochem Biophys Res Commun. 205:17 701 775.
  139. I. M., Kulichkova V. A., Evteeva I. N., Mittenberg A. G., Volkova I. V., Ermolaeva J. Π’., Gause L N. 1999. The specific endoribonuclease activity of small nuclear and cytoplasmic aRNPs. FEBS Lett. 462: 407−410.
  140. E.G., Sorkina Π’., Beguinot Π’., Sorkin A. 1996. Carboxy-terminal receptor domain 1022−1123is responsible for the lysosomal targeting of EGF receptor. J. Biol. Chem. 271: 30 340−30 346.
  141. Ku N-O., Zhou X., Toivola D.M., Omary B. 1999. The cytosceleton of digestive epitelia in health and desease. Am.J.Physiol. 277: 11 081 137
  142. U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4.Nature. 227: 680−685.
  143. Lai Y. K, Lee W. C., Chen K. D. 1993. Vimentin serves as a phosphate sink during the apparent activation of protein kinases by okadic acid in mammalian cells. J. Cell. Biochem. 53: 161−168.
  144. Lamarche N., Tapon N., Stowers L, Burbelo P. Π’., Aspenstrom P., Bridges Π’.- Chant J., Hall A. 1996. Rac and cdc42 induce actin polimerization and G1 cell cycle progression independent of p65 PAK and the JNK/SAPK MAPkinase cascade. Cell. 87: 519−529.
  145. C.A., Shen Π’., Horwitz KB. 2000. Phosphorylation of human progesteron receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc. Natl. Acad. Sci. USA. 97: 1032−1037.
  146. Lee D. H., Goldfarb A. L. 1998. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8: 397−403.
  147. Lee S. Π’., Rhee S-.G. 1995. Significance of PIP2 hydrolysis and regulation of phospholipase Π‘ isozymes. Curr. Opin. Cell. Biol. 7: 183 189.
  148. Lee S. H., Kwon K.S., Kim S-R., Rhee S-G. 1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A-431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273: 1 536 615 372.
  149. Lee Y.H., Lee H.J., Lee S.J., Min D.S., Baek S.H., Kim Y.S., Ryu S.H., Suh P.G. 1995. Down-regulation of phospholipase C-gamma1 during the differentiation of U937 cells. FEBS Lett. 358: 105−108.
  150. M. A., Falasca M., Ferguson К. M., Schlessinger J. 1997a. Regulatory requirement of signaling molecules to the cell membrane by plekstrin-homology domains. Trends Cell. Biol. 7: 237 242.
  151. Lemmon M. A., Ferguson К. M., O’Brien R., Sigler P. Π’., Schlessinger J. 1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92: 10 472 -10 476.
  152. M. A., Ferguson К. M., Schlessinger J. 1997b. PH domains- diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 85: 621−624.
  153. Lenard D. M., Nawaz Z., Smith C. L., O’Malley B. W. 2000. The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor alpha transactivation. Mol. Biol. 5: 939−948.
  154. Leung Π’., Manser E., Tan L, Lirn L. 1995. A novel serine-threonine kinase binding the ras-related rhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270: 29 051−29 054.
  155. Li N., BatzerA., Daly R., Yanik V., Skolnik E., Chardin P., Bar-Sagi D., Margolis Π’., Schlessinger J. 1993. Guanine-nucleotide -releasing factors hSos binds Grb2 and links receptor tyrosine kinases to ras signalling. Nature. 363: 85−88.
  156. Li W., Ни P., Skolnik E. Y., Ullrich A., Schlessinger J. 1992. The SH2 and SH3 domain- containing Nek protein is oncogenic and a common target for phosphorylation by different surface receptors. Mol. Cell. Biol. 12: 5824−5833.
  157. Lu Z, Lin D., Homia A., Davonish W., Pegano M., Foster D. A. 1998. Activation of protein kinase Π‘ triggers its ubiquitination and degradation. Mol. Cell. Biol. 18: 839−845.
  158. L. M., Hall A. 1996. Rho: a connection between membrane receptor signaling and the cytoskeleton. Trends Cell. Biol. 6: 304−310.
  159. Machiels B.M., Heuflig M.E., Schutte Π’., van Engeland M., Broiers J.L., Ramaekers F.C. 1996. Subcellular localization of proteasomes in apoptotic lung tumor cells and persistence as compared to intermediate filaments. Eur. J. Cell. Biol. 70: 250−259.
  160. Mackay D. J. C., Esch F., Furthmayr H., Hall A. 1997. Rho- and Rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/Radexin/ moezin proteins. J. Cell. Biol. 138: 927−938.
  161. MacKeven I. N., Guo G. G., Fried V. A., Etlinger J. D., SehgalP. B. 1999. Cellular physiology of STAT3: where’s the cytoplasmic monomer? J. Biol. Chem. 274: 25 499−25 509.
  162. Margolis Π’., Li N., Mohamrnadi M., Hurwitz D. .R., Zilberstein A., Ullrich A., Schlessinger J. 1990a. The tyrosine phosphorylated carboxyterrhinus of EGF receptor is a binding site for GAP and PLCy. EMBO J. 9: 4375−4380.
  163. Π’., Rhee S.G., Felder S., Mervic M., Lyall R., Levitzki A., Ullrich A., Zilberstein A., Schlessinger J. 1989. EGF induces tyrosine phosphorylation of phospholipase C-y: a potential mechanism of EGF receptor signaling. Cell. 57: 1101−1107.
  164. Margolis Π’., Zilberstein A., Franks C., Felder S., Kremer S., Ullrich A., Rhee S.-G., Skorecki K., Schlessinger J. 1990b. Effect of phospholipase C-y overexpression on PDGF-induced second messengers and mitogenesis. Science. 248: 607−610.
  165. C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal regulated kinase activation. Cell. 27: 179−185.
  166. M., Mayer B. J., Fukui Y., Hanafusa H. 1990. Binding of oncoprotein p47gag-crk, to a broad range of phosphotyrosine-containg proteins. Science. 248: 1537−1539.
  167. К., Shibasaki F., Shibata M., Takenawa T. 1993. Ash/Grb-2, a SH2/SH3-containing protein, couples to signaling for mitogenesis and cytoskeleton reorganization by EGF and PDGF. EMBO J. 12: 3467−3473.
  168. May M.J., Ghosh S. 1998. Signal transduction through NF-kB. Immunol. Today. 19: 80−88.
  169. B. J., Baltimore D. 1993. Signaling through SH2 and SH3 domains. Trends Cell. Biol. 3: 8−13.
  170. Mayer B. J., Ren R., Clark K. L, Baltimore D. 1993. A putative modular domain present in diverse signaling molecules. Cell 73: 629 630.
  171. McBride K., Rhee S.-G., Jaken S. 1991. Immunocytochermical localization of phospholipase Cy1 in rat embryo fibroblasts. Proc. Natl. Acad. Sci. USA. 88:7111−7115.
  172. Meisenhelder J., Suh P.-G., Rhee S.-G. Hunter T. 1989. Phospholipase Π‘ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell. 57: 1109−1122.
  173. E., Gilman M., Natesan S. 1999. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J. 18: 6439−6447.
  174. Moran M. F., Koch C. A., Anderson D., Ellis C., England L, Martin G. S., Pawson T. 1990. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Nat. Acad. Sci. USA. 87: 8622−8626.
  175. S., Tanaka K., Omura S., Saitop Y. 1995. Degradation process of ligand-stimulated platelet-derived growth factor beta-receptor involves ubiquitin-proteasome proteolytic pathway. J. Biol. Chem. 270: 29 447−29 452.
  176. D. K., Kaplan D. R., Rhee S. G., Williams L. T. 1990. Platelet-derived growth factor (PDGF)-dependent association of phospholipase C-y with the PDGF receptor signaling complex. Mol. Cel. Biol. 10: 2359−2366.
  177. D. G., Musci M. A., Ross S. E., Koretzky G. A. 1996. Tyrosine phosphorylation of grb2-associated proteins correlates with phospholipase Π‘ gammal activation in T cells. Mol. Cell. Biol. 16: 2823−2829.
  178. A., Gibson Π’., Rice P., Thompson J., Sarasate M. 1993. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18: 343−348.
  179. A., Noble M., Paupti R., Wiereng A. R., Sarasate M. 1992. Crystal structure of a Src homology 3 (SH3 domain). Nature. 359: 851−855.
  180. P., Amieva M. R., Furthmayr R. 1995. Phosphorylation of threonine 558 in carboxy-terminal actin-binding domain of moesin by trombin activation of human platelets. J. Biol. Chem. 270: 3 137 731 385.
  181. D., Jiang H., Monaco J. J. 1996. Identification of MECL-1 (LMP-10) as third IFN-gamma-inducible proteasoma subunit. J. Immunol. 156: 2361−2364.
  182. Nawaz Z., Lonard DM., Dennis A.P., Smith C.L., O’Malley B.W. 1999. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA. 96: 1858−1862.
  183. Nederlof P. M, Wang H.R., Baumeister W. 1995. Nuclear localization signals of human and Termoplasma proteasomal alpha subunits are functional in vitro. Proc. Natl. Acad. Sci. USA 92: 1 206 012 064
  184. N. N. 1991. Tyrosine kinase activity of internalized epidermal growth factor receptor. Biomed. Sci. 2: 339−343.
  185. Nishimura R., Li W., Kashishian A., Mondino A., Zhou M., Cooper J., Schlessinger J. 1993. Two signaling molecules share aphosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol. Cell. Biol. 13: 6889−6896.
  186. Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 258: 607 614.
  187. C. D., Hall A. 1995. Rho, Rac and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress-fibres, lamelipodia and filopodia. Cell. 81: 53−62.
  188. Noh D.Y., Kang H.S., Kim Y.C., Youn Y.K., Oh S.K., Choe K.J., Park LA., Ryu S.H., Suh P.DG. 1998. Expression of phospholipase Π‘ gamma 1 and its transcriptional regulators in breast cancer tissues. Anticancer Res. 18: 2643−2648.
  189. Noh D.Y., Shin S. H., Rhee S.-G. 1995. Phosphoinositide-specific phospholipase Π‘ and mitogenic signaling. Biochem. Biophys. Acta. 1242: 99−113.
  190. Northwang H.G., Coux O., Bey P., Scherrer K. 1992. Prosomes and their multicatalytic proteinase activity. Eur. J. Biochem. 207: 621 630.
  191. Obermeier A., HalfterH., Wiesemuller K.-H., Jung G., Schlessinger J., Ullrich A. 1993. Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO J. 12: 933−941.
  192. A., Tinhofer I., Grunieke H. H., Ullrich A. 1996. Transforming potentials of epidermal growth factor and nerve growth factor receptors inversely correlates with phospholipase Cgamma affinity and signal activation. EMBO J. 15: 73−82.
  193. Oda H., Kumar S., Howley P.M. 1999. Regulation of the SRC family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc. Natl. Acad. Sci USA 96: 9557−9562.
  194. Ogiso Y., Tomido A., Kim H.D., Tsuruo T. 1999. Glucose starvation and hypoxia induce nuclear accumulation of proteasome in cancer cells. Biochem. Biophys. Res. Commun. 258: 448−452.
  195. M., Gamou S., Shimizu N. 1998. Antisense olgonucleotide of WAF1 gene prevents EGF-induced cell-cycle arrest in A-431 cells. Oncogene. 16: 797−802.
  196. Olink-Coux M., Arcangeletti M.C., Minisini R., Huesca M., Chezzi C., Scherrer К 1994. Cytolocation of prosome antigenes on intermediate filament subnetworks of cytokeratin, vimentin and desmin type. J. Cell. Sci. 107: 353−366.
  197. A., Rivett A.J., Thomson S., Hendil KB., Butcher G.W., Fuertas G., Knecht E. 1996. Subpopulation of proteasome in rat liver nuclei, microsomes and cytosol. Biochem. J. 316: 401−407.
  198. Pappa H., Murray-Rust J., Dekker L. V., Parker P. J., Mcdonald N. Q. 1998. Crystal structure of the C2 domain from protein kinase C-delta. Structure. 6: 885−894.
  199. P. J., Hemmings B. A., Gierschik P. 1994. PH domain and phospholipases a meaningful relationship? Trends Biochem. Sci. 19: 54−55.
  200. Paterson H. F., Savopoulus J. W., Perisic O., Elli S. M. V., Williams R. L, Katan M. 1995. Phospholipase C6 requires a plecstrin homology domain for interaction with plasma membrane. Biochem. J. 312: 661 666.
  201. T. 1995. Protein modules and signaling networks. Nature. 373: 573−579.
  202. Π’., Gish G. D. 1992. SH2 and SH3 domains: from structure to function. Cell. 71: 359−362.
  203. Π’., Schlessinger J. 1993. SH2 and SH3 domains. Curr. Biol. 3: 434−442.
  204. Π’., Scott J. D. 1997. Signaling through scaffold, anchoring and adaptor proteins. Science. 278: 2075−2080.
  205. Payrastre Π’., Nievers M., Boonstra J., Berton M., Verkley A. J., van Bergen en Henegouven P.M.P. 1992. A different location of phosphoinositide kinase, diacylglycerol and phospholipase Π‘ in the nuclear matrix. J. Biol. Chem. 267: 5078−5084.
  206. Π’., Plantavid M., Breton M., Chambaz E.M., Chap H. 1990. Relationship between phosphoinositide kinase activities and protein tyrosine phosphorylation in plasma membrane from A-431 cells. Biochem. J. 272: 665−670.
  207. Pei Z, Maloney J. A., Yang L, Williamson J. R. 1997. A new function of phospholipase C-gamma1: coupling to the adaptor protein GRB2. Arch. Biochem. Biophys. 345: 103−110.
  208. Pei Z., Williamson J. R. 1998. Mutations of residues Tyr 771 and Tyr 783 of phospholipase C-gamma 1 have different effects on cell actin-cytoskeleton organization and cell proliferation. FEBS Lett. 423: 53−56.
  209. K., Amieva M. R., Strassel C. P., Nauseef W. M., Furthmayer H., Luna E. J. 1995. Moesin, ezrin and p205 are actin-binding proteins associated with neutrophil plasma membrane. Mol. Biol. Cell. 6: 247−259.
  210. Pffefer L.M., Mullersman J.E., Pffefer S.R., Murti A., Shi W., Yang C.H. 1997. STAT3 as an adaptor to couple phosphatidyl! nositol 3kinase to the IFNAR1 chain of the typel interferon receptor. Science. 276: 1418−1420.
  211. Π‘. M. 1997. Targeting of substrates to the 26 S proteasome. FASEB J. 11: 1056−1066.
  212. Pitze F., Dantes A., Fuchs TBaumeister W.: Amsterdam A. 1996. Removal of proteasomes from the nucleus and the accumulation in apoptotic blebs during programmed cell death. FEBS Lett. 394: 47−50.
  213. R., Cancelli I., Π‘ aval I a P., Borto/otto S., Dominguez J., Dretta G.F., Rivett A.J. 1998. Intracellular distribution of proteasomes. Curr. Opin. Immunol. 10: 110−114.
  214. M. N., Petit F., Buri J., Breand Y., Schmidt H. P. 1995. Identification and initial characterization of a specific proteasome (prosome) associated RNAase activity. J. Biol. Chem. 270:2 202 522 028.
  215. Rameh L.E., Rhee S.-G., Spokes K., Kazlauskas A., Cantley L.C., Cantley L.G. 1998. Phosphoinosiyide 3-kinase regulates phospholipase Π‘Ρƒ-mediated calcium signaling. J. Biol. Chem. 273: 23 750−23 757.
  216. K.B., Keshamouni V.G., Chen Y.G. 1999. The level of tyrosine kinase activity regulates the expression of p21/WAF1 in cancer cells. Int. J. Oncol. 15: 301−306.
  217. Reits E.A.J., Benham A.M., Plougastel Π’., Neefies J., Trowsdale J. 1997. Dynamics of proteasome distribution in living cells. EMBO J. 16: 6087−6094.
  218. Ren R., Mayer B. J., Cicchetti P., Baltimore D. 1993. Identification of a ten-aminoacid prolin rich SH3 binding sites. Science. 259: 11 571 161.
  219. Rhee S, G., Choi K. D. 1992. Regulation of inositol phospholipid-specific phospholipase Π‘ isozymes. J. Biol. Chem. 267: 12 393−12 396.
  220. Rhee S.-G. 1991. Inositol phospholipid-specific phospholipase C: interaction of the isoform with tyrosine kinase. Trends Biol.Sci. 16: 297−301.
  221. Rhee S.-G., Bae Y. S. 1997. Regulation of phosphoinositide-specific phospholipase Π‘ isozymes. J. Biol. Chem. 272: 15 045−15 048.
  222. Rhee S.-G., Suh S.,. Ryu H" Lee S. L. 1989. Studies of inositol phospholipid-specific phospholipase C. Science. 244: 546−550.
  223. A. J., Hall A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibres in response to growth factors. Cell 70: 389−399.
  224. D. J., Stern D. F. 1998. Specificity within the EGF family/ErbB receptor family signaling network. BioAssays 29: 41−48.
  225. Rijken P. J., Hage W. H., van Bergen en Henegouven P. M. P., Verkleij A. J., Boonstra J. 1991. Epidermal growth factor induces rapidreorganization of the actin microfilament system in human A-431 cells. J. Cell. Sci. 100: 491−499.
  226. Rijken R. J., van Hal G.J., van der Heyden M.A., Verkleij A.J., Boonstra J. 1998. Actin polymerization is requred for negative feedback regulation of epidermal growth-factor-induced signal transduction. Exp. Cell. Res. 243: 254−262.
  227. A. J., Palmer A., Knecht E. 1992. Electron microscopic localization of the multicatalytic proteinase complex in rat liver and cultured cells. J. Histochem. Cytochem. 40: 1165−1172.
  228. A.J. 1993.Characterization of proteasomes isolated from rat liver. Enz. Protein. 47: 210−219.
  229. A.J. 1998. Intracellular distribution of proteasomes. Curr. Opin. Immunol. 10: 110−114.
  230. A.J., Maison G. G., Thomson S., Pike A.M., Savory P.J., Murray R. Z. 1995. Catalytic components of prteasomes and the regulation of proteinase activity. Mol. Biol. Rep. 21: 35−41.
  231. J., Kelly R. B. 1998. Dap 160, a neuronal specific eps15 homology and multiple SH3-domain containing protein that interacts Drosophila dynamin. J. Biol. Chem. 273: 19 108−19 119.
  232. D., Canella D., Boulaire J., Fitzgerald P., Fotedar A., Fotedar R. 1999. Growth inhibition by CDK-cyclin and RCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene. 18: 3290−3302.
  233. Rozakis-Adcock M., Fernley R., Wade J., Pawson Π’., Bowtell D. 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosI. Nature. 363: 83−85.
  234. H. Π’., Gilman M. Z. 1993. Cell-free activation of a DNA-binding protein by EGF. Nature. 362: 79−83.
  235. H. Π’., Shuai K., Darnell J. E. Jr., Gilmon H. Z. 1993. A common nuclear signal transduction pathway activated by growth factor and cytocine receptor. Science. 261: 1739−1744.
  236. I., Stone J.C., Pawson T. 1986. A noncatalyic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transformingactivity of Fujinami sarcoma virus p130 gag-fps. Moll. Cell. Biol. 6.: 4396−4408.
  237. L. 1998. The role of calcium in the cell cycle: facts and hypothesis. Biochem. Biophys. Res. Commun. 244: 317−324.
  238. K. 1990. Proteasomes, subcomplexes of untranslated messenger RNP. Mol. Biol. Rep. 1: 1−9.
  239. J. 1997. Phospholipase Cy activation and phosphoinositide hydrolysis are essential for embryonal development. Proc. Natl. Acad. Sci. USA. 94: 2798−2799.
  240. J., Geiger B. 1981. Epidermal growth factor induces redistribution of actin and a-actinin in human epidermal carcinoma cells. Exp. Cell. Res. 134: 273−279.
  241. J., Ullrich A. 1992. Growth factor signaling by receptor tyrosine kinases. Neuron. 9: 383−391.
  242. Seedorf К, Kostka G., Lammers R., Bashkin P., Daly R., Burgess W. H., van der Bliek A., Schlessinger J., Ullrich A. 1994. Dynamin binds to SH3 domain of phospholipase Cy and GRB2. J. Biol. Chem. 269: 16 009−16 014.
  243. K., Shearman M., Ullrich A. 1995. Rapid and long-term effects on protein kinase Π‘ in receptor tyrosine kinase phosphorylation and degradation. J. Biol. Chem. 270: 18 953−18 960.
  244. Seeger M., Kraft R., Ferell K, Bech-Otschur D., Dumdey R., Schade R., Gordon C., Naumann M., Dubiel W. 1998. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 12: 469−478.
  245. A.S., Wang W., Bishay Y., Cohen S., Egan S.E. 1999. The EH domain and SH3-domain of Ese protein regulates endocytosis by linking to dynamin and Eps15. EMBO J. 18: 1159−1171.
  246. R.J., Henry M., Solomon F., Jackes T. 1998. Rho-A -dependent phosphorylation and localization of ERM proteins into apical membrane protrusions in fibroblasts. Mol. Biol. Cell. 9: 403−419.
  247. R.J., Singer J.D., Swanger J., Smetherman M., Roberts J.M., Clurman B.E. 2000. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell. 5: 403−410.
  248. Shen S. H., Bastein Π’. I., Posner Π’. IChretin P. 1991. A protein tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature. 352: 736−739.
  249. M., Kariya Ki., Liao Y., Ни Π‘. D., Watari Y., Goshima M., Shima P., Kataoka T.1998. Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J. Biol. Chem. 273: 6218−6222.
  250. Shih S.C., Sloper-mould K.E., Hicke L. 2000. Monoubiquitin carries a novel internalization signal that appended to activated receptors. EMBO J. 19: 187−192.
  251. Simpson F., Hussian N. K, Qualmann Π’., Kelly R. Π’., Key Π’. K, McPherson P. S., Schmidt S. 1999. SH3-domain -containing proteins function at distinct steps in clathrin-vesicle formation. Nature Cell. Biol. 1: 119−124.
  252. W. D., Brown H. A., Sternweis P. C. 1997. Regulation- of eukariotic phosphatidylinositol-specific phospholipase Π‘ and phospholipase D. Annu. Rev. Biochem. 66: 475−509.
  253. Smith M. R., Ryu S. H., Suh P. G., Rhee S. G., Kung H. F. 1998. S-phase induction and transformation of quiscent NIH 3T3 cells by microinjection of phospholipase C. Proc. Natl. Acad. Sci. USA 86: 3659−3663.
  254. Smith M. R., Ya-Lun Liu, Mattews N. Π’., Rhee S-G., Sung W .K, Kung H. 1994. Phospholipase C-y1 can induce DNA synthesis by amechanism independent of its lipase activity. Proc. Natl. Acad. Sci. USA. 91: 6554−6558.
  255. Soler C., Beguinot L, Carpenter G. 1994. Individal epidermal growth factor receptor autophosphorylation sites do not stringently define association motifs for several SH2-containing proteins. J. Biol. Chem. 269: 12 320−12 324.
  256. A. D., Kornilova E. S., Teslenko L. V., Sorokin А. Π’., Nikolsky N. N. 1988. Recycling of epidermal growth factor receptor complexes in A-431 cells. Biochem. Biophys. Acta. 1011: 88−96.
  257. A., Gineitis D., Copeland J., Triesman R. 1999. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics, Cell 98: 159−169.
  258. Stayffer Π’. P., Ahn S., Mayer T. 1998. Receptor-induced transient reduction in plasma membrane Ptdlns (4,5)P2 concentration monitored in living cells. Curr. Biol. 8: 343−346.
  259. L., Jackson Π’., Hawkins P. T. 1993. Agonist-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate: a new intracellular signaling system. Biochem. Biophys. Acta. 1179: 27−75.
  260. P. IN., Horvitz H. R. 1991. Signal transduction during C. elegans vulval induction. Trends Genet. 7: 366−371.
  261. P. C., Smrcka A. V. 1992. Regulation of phospholipase Π‘ by G proteins. Trends Biochem. Sci. 17: 502−506.
  262. R., Kloetzel P. M. 1996. Cytokine induce changes in proteasome subunit composition are concentration dependent. Biol. Chem. 377: 571−577.
  263. Strickland E., Hakala K, Thomas P. J., DeMartino G. N. 2000. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26S protasome. J. Biol. Chem. 275: 5565−5572.
  264. K., Takahashi K. 7996.lnhibition of demicolcin-induced DNA synthesis by inhibitors of phospholipase Π‘ and protein kinase C. Biochem, Biophys. Res. Commun. 219: 163−167.
  265. Sylvia V., Curtin G., Norman /., Stec J., Dusbee D. 1988. Activation of a low specific activity form of DNA polymerase a by inositol 1,4-biphosphate. Cell. 54: 651−658.
  266. M. 1996. Rho family GTPases: the cytoskeleton and beyond. TIBS 21: 178−18!
  267. K. 1998. Proteasomes: structure and biology. J. Biochem. 123: 195−204.
  268. K., Tsurimi C. 1997. The 26S proteasome: subunits and function. Mol. Biol. Rep. 24: 3−1!
  269. J. R., Gaines P. C., Ebert P., Carlson J. R. 1998. small wing encodes a phospholipase C-(gamma) that acts as a negative regulator of R7 development in Drosophila. Development. 125: 50 335 042.
  270. Thomas G.M.H., Cunningham E., Fensome A., Ball A., Totty N.F., Truong O., Hsuan J.J., Cockroft Sh. 1993. An essential role forphosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling. Cell. 74:919−928.
  271. Thrower J.S., Hoffman L, Rechsteiner M., Pickert CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19: 94 102.
  272. Tokumoto M, Yamaguchi A, Nagahama Y, Tokumoto T. 2000 Identification of the goldfish 20S proteasome beta6 subunit bound to nuclear matrix. FEBS Lett. 472: 62−66.
  273. K. P., Cantley L. C., Carpenter G. 1995. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 270: 17 656−17 659.
  274. K., Inglese J., Pitcher J. A., Shaw G., Lefkovitcz R. J. 1994. Binding of G protein py-subunits to plekstrin homology domains. J. Biol. Chem. 269: 10 217−10 220.
  275. M., Gotoh N., Handa H., Shibuya M. 1998. Involvement of MAP kinase-independent protein kinase Π‘ signaling pathway in the EGF-induced p21 (WAF1/Cip1) expression and growth inhibition of A431 cells. Biochem. Biophys. Res. Commun. 250: 430−435.
  276. S., Simon M. I., Witte O. N., Katz A. 1994. Binding of py-subunits of heteromeric G proteins to the PH domain of Burtons tyrosine kinase. Proc. Natl. Acad. Sci. USA 91:11 256−11 260.
  277. Turunen O, Wahlstrom T, Vaheri A. 1994. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol. 126: 1445−1453.
  278. A., Schlessinger J. 1990. Signal transduction by receptor with tyrosine kinase activity. Cell. 61: 203−212.
  279. A. 1997. The N-end rule pathway of protein degradation. Genes Cells. 1: 13−28.
  280. M., Carpenter G. 1997. Constitutive proteolysis of the Erb B4 receptor tyrosine kinase by a uniq, sequental mechanism. J. Cell. Biol. 139: 995−1003.
  281. Q. Π‘., Cochet Π‘., Filhol О., Chang Π‘-P., Rhee S.-G., Gill G. M. 1992. A site of tyrosine phosphorylation in the c-terminus of the EGF-receptor is required to activate phospholipase C. Mol. Cell. Biol. 12: 128−135.
  282. Venema R.C., Yu H., Venema V. J., Schieffer Π’., Harp J. Π’., Ling B. N., Eaton D. C., Marrero M. B. 1998a. Angiotensin 11-induced association of phospholipase Π‘ gammal with G-protein-coupled AT1 receptor. J. Biol. Chem. 273: 7703−7708.
  283. Vogel W., Lammers R., Huang J,. Ullrich A. 1993. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science. 259: 1611−1614.
  284. Wahl M. I., Jones G. A., Nishibe S., Rhee S G., Carpenter G. 1992. Growth factor stimulation of phospholipase C-y1 activity. J. Biol. Chem. 267: 10 447−10 456.
  285. Wahl M. I., Nishibe S., Kim J. W., Rhee S. G., Carpenter G. 1990. Identification of two epidermal growth factor sensitive tyrosine phosphorylation sites of phospholipase C-y1 in intact HSC-1 cells. J. Biol. Chem. 265: 3944−3948.
  286. Wang D. S" Miller R., Shaw G. 1996. The plekstrin homology domain of human Π’Π¨1 spectrin is targeted to the plasma membrane in vivo. Biochem. Biophys. Res. Commun. 225:420−426.
  287. H. R., Kania M., Baumeister W., Nederlof P. 1997. Import of human and Thermoplasia proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur. J. Cell. Biol. 73: 105−113.
  288. Wang Z, Gluck S., Moran M. F. 1998. Requirement for phospholipase C-gamma1 enzymatic activity in growth factor induced mitogenesis. Mol. Cell. Biol. 18: 590−597
  289. Wei N., Deng W. 1999. Making sence of the COP9-signalosome. A regulatory complex conserved from Arabidopsis to human. Trends Genet. 15: 98−103.
  290. Wiegant F. A. C., Block F. J., Defize L. H. K., Linnemas W. A. M., Verkley A. J., Boonstra J. 1986. Epidermal growth factor receptor associated to cytoskeletal elements of epidermoid carcinoma (A431) cells. J. Cell. Biol. 103: 87−94.
  291. Xie Z, Bickle D. D. 1999. Phospholipase C-gamma1 is required for calcium-induced keratinocyte differentiation. J. Biol. Chem. 274: 20 421−20 424.
  292. Yang L, Rhee S.G., Williamson J. R. 1994. Epidermal growth factor-induced activation and translocation of phospholipase Cy1 to the cytoskeleton in rat hepatocytes. J. Biol. Chem. 269: 7156−7162.
  293. Yen Π‘. H., Yang Y. C., Ruscetti S. K., Kirken R. A., Li Π‘. C. 2000. Involvement of the ubiquitin-proteasome pathway in the degaradationof nontyrosine kinase-type cytokine receptors of IL-9, IL-2 and erythropoietin. J. Immunol. 165: 6372−6380.
  294. Yeo E.J., Provost J.J., Exton J.H. 1997. Dissociation of tyrosine phosphorylation and activation of phosphoinositide phospholipase Π‘ induced by the protein kinase inhibitor Ro-31−8220. Biochem. Biophys. Acta. 1356: 308−320.
  295. Yi Π’., Clevland J. L, Ihle J. N. 1992. Protein tyrosin phosphatase containing SH2 domains- characterization, preferential expression in hematopoetic cells, and localization to human chromosome 12p12-p13. Mol. Cell. Biol. 12: 836−846.
  296. Yu H., Fukuiami K., Itoh Π’., Takenawa T. 1998. Phosphorylation of phospholipase Π‘ gammal on tyrosine residue 783 by platelet-derived growth factor regulates reorganization of cytoskeleton. Exp. Cell. Res. 243: 113−122.
  297. Yu H., Kaung G., Kabayashi S., Kopito R. R. 1997. Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J. Biol. Chem. 272: 20 800−20 804
  298. Yu H., Rosen M. K., Bam Shin Π’., Siedel-Dugon C., Brugge J. S., Schriber S. L. 1993. Solution structure of the SH3 domain of Src and identification of its ligand binding site. Science. 258: 1665−1668.
  299. H., Haff H., Sell C. 2000. Insulin-like growth factor 1 -mediated degradation of insulin receptor substrate-1 is inhibited by epidermal growth factor in prostate epitelial cells. J. Biol. Chem. 275: 22 558−22 562.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ