Бакалавр
Дипломные и курсовые на заказ

Роль фосфолипазы С ? в проведении сигнала, запускаемого эпидермальным фактором роста

ДиссертацияПомощь в написанииУзнать стоимостьмоей работы

Проблема передачи клеточного сигнала — одна из наиболее актуальных и быстро развивающихся областей современной клеточной биологии. Под передачей сигнала понимают внутриклеточные события, которые происходят в результате действия на клетку внеклеточных лигандов (факторов роста, цитокинов, гормонов, нейромедиаторов) и приводят к ответу клетки — пролиферации, дифференцировке, апоптозу. Способность… Читать ещё >

Содержание

  • 1. Введение
  • 2. Литературный обзор
    • 2. 1. ФЛСу1 — участник основных клеточных процессов
    • 2. 2. Семейство фосфолипаз С
    • 2. 3. Модульная теория проведения клеточного сигнала
    • 2. 4. Доменная структура фосфолипаз С
    • 2. 5. Взаимодействие ФЛСу1 с клеточными протеинтирозинкиназами
    • 2. 6. Фосфорилирование по тирозину и активация ФЛСу
    • 2. 7. Основные пути передачи сигнала, запускаемого
  • ЭФР и их пересечения
    • 2. 8. Участие цитоскелета в проведении сигнала
    • 2. 9. Негативная регуляция сигнальных белков
  • 3. Материалы и методы
    • 3. 1. Клеточные линии и их культивирование
    • 3. 2. Антитела
    • 3. 3. Иммнопреципитация и иммуноблотинг
    • 3. 4. Ингибиторный анализ
    • 3. 5. Иммунофлуоресцентный анализ
    • 3. 6. Клеточное фракционирование
    • 3. 7. Выделение протеасом
    • 3. 8. Определение активности протеасом
    • 3. 9. Пептидное картирование
    • 3. 10. Электронномикроскопическая иммуноцитохимия
  • 4. Результаты
    • 4. 1. ФЛСу1 негативно регулирует рецептор ЭФР
    • 4. 2. Латентные комплексы сигнальных белков
    • 4. 3. Регуляция ФЛСу1 в процессе проведения сигнала, запускаемого ЭФР
      • 4. 3. 1. ФЛСу1 образует комплексы с активированным рецептором ЭФР
      • 4. 3. 2. ФЛСу1 ассоциируется не только с мембранным, но и с интернализованным рецептором ЭФР
      • 4. 3. 3. Действие ЭФР приводит к перераспределению ФЛСу на мембраны
      • 4. 3. 4. ФЛСу1 регулируется с участием протеасом в клетках 90 — 92 А
    • 4. 4. Белок рбб — протеолитический фрагмент ФЛСу
    • 4. 5. Изменения протеасом при действии ЭФР
      • 4. 5. 1. Изменение субъединичного состава протеасом при действии ЭФР
      • 4. 5. 2. Действие ЭФР на активность протеасом
      • 4. 5. 3. Действие ЭФР на внутриклеточное распределение протеасом
    • 4. 6. Взаимодействие ФЛСу1 с элементами цитоскелета
      • 4. 6. 1. ФЛСу1 ассоциируется с актином
      • 4. 6. 2. Влияние ферментативной активности ФЛСу1 на состояние актинового цитоскелета
      • 4. 6. 3. ФЛСу1 ассоциируется с промежуточными филаментами в клетках А
  • 5. Обсуждение
    • 5. 1. ФЛСу негативно регулирует активность рецептора ЭФР
    • 5. 2. Регуляция ФЛСу1 в процессе проведения сигнала, запускаемого ЭФР
      • 5. 2. 1. ФЛСу1 взаимодействует с активированными рецепторами ЭФР
      • 5. 2. 2. Действие ЭФР приводит к транслокации ФЛСу1 на клеточную мембрану
      • 5. 2. 3. Механизмы негативной регуляции ФЛСу
    • 5. 3. Протеасомы — активный компонент передачи сигнала, запускаемого ЭФР

Роль фосфолипазы С ? в проведении сигнала, запускаемого эпидермальным фактором роста (реферат, курсовая, диплом, контрольная)

Проблема передачи клеточного сигнала — одна из наиболее актуальных и быстро развивающихся областей современной клеточной биологии. Под передачей сигнала понимают внутриклеточные события, которые происходят в результате действия на клетку внеклеточных лигандов (факторов роста, цитокинов, гормонов, нейромедиаторов) и приводят к ответу клетки — пролиферации, дифференцировке, апоптозу. Способность к ответу на внешние сигналы обеспечивает координацию клеток многоклеточного организма. Многие болезни человека сопровождаются изменением способности клеток к ответу на сигналы. Так, известно, что опухолевые клетки выходят из-под контроля организма и не регулируются действием внеклеточных лигандов.

Ключевой этап в проведении сигнала, запускаемого факторами роста — активация клеточных рецепторов при действии внеклеточных лигандов (Никольский и др., 1987). Активированные клеточные рецепторы являются стартовыми точками каскадов белковых взаимодействий с участием сигнальных молекул, приводящих к ответу клетки на сигнал (Cadena, Gill, 1992; Schlessinger, Ullrich, 1992).

Механизмом активации клеточных рецепторов является фосфорилирование аминокислотных остатков тирозина, расположенных в цитоплазматическом домене рецептора (Schlessinger, Ullrich, 1992). Тирозиновое фосфорилирование рецепторов осуществляется либо за счет тирозинкиназной активности самого рецептора, что обнаружено для рецепторов факторов роста, либо за счет цитоплазматических тирозинкиназ, например, в случае цитокиновых рецепторов.

Cadena, Gill, 1992). Появление фосфорилированных тирозинов в молекуле клеточных рецепторов создает сайты, к которым присоединяются сигнальные белки, содержащие 8Н2-домены (Pawson, 1995). Образование комплексов активированных клеточных рецепторов с сигнальными белками обеспечивает возможность для тирозинкиназы рецептора фосфорилировать сигнальные белки.

Основная нерешенная проблема передачи клеточного сигнала — определение событий, обеспечивающих тот или иной ответ клетки на сигнал (пролиферацию, остановку роста, дифференцировке, апоптоз). Выказывается предположение, что выбор клеточного ответа зависит в основном от этапа следующего непосредственно за взаимодействием клеточных рецепторов с белками — субстратами его тирозинкиназной активности.

Одним из наиболее известных и изучаемых в последнее время сигнальных белков, непосредственно связывающихся с активированными клеточными рецепторами и являющимся субстратом тирозинкиназной активности рецепторов, является фосфоинозитид-специфическая фосфолипаза Су1 (ФЛСу1) -фермент фосфоинозитидного обмена (Rhee, 1991).

Ключевая роль ФЛСу1 во многих процессах определяется ее участием в наиболее раннем ответе клетки на действие различных сигналов (Margolis et al., 1989). Несмотря на огромное количество экспериментальных данных вопросы, связанные с механизмами регуляции ФЛСу1 и ее участием в проведении сигнала далеки от выяснения. Трудность определения роли ФЛСу1 в процессе проведения сигнала определяется в первую очередь ее функцией. ФЛСу1 гидролизует минорный компонент мембран фосфоинозитид-4,5-бисфосфат с образованием инозитид-3.4.5-трисфосфата и диацилглицерина, что приводит к выходу ионов кальция из внутриклеточных депо и активации белков семейства протеинкиназ С (Berridge, 1993). Таким образом, ФЛСу1 участвует в регуляции сразу очень многих процессов, которые зависят от концентрации ионов кальция, от сермн-треонинового фосфорилирования, осуществляемого протеинкиназами С, а также от концентрации фосфоинозитид-4.5-бисфосфата, с которым связаны многие белками, определяющими состояние актинового цитоскелета.

Исследование механизмов проведения сигнала в клетке осложняется тем, что в результате действия одного лиганда происходит не только активация многих сигнальных систем клетки, но и их взаимные пересечения. Кроме того, один и тот же лиганд может вызывать различные ответы клетки, например, ЭФР — пролиферацию, остановку роста или клеточную подвижность эпителиальных клеток (Chen et al., 1994; Noh et al., 1995; Johannessen et al., 1999). При этом в клеточном ответе могут участвовать различные сигнальные системы. На проведение сигнала могут влиять структурные компоненты клетки, ярким примером которых является цитоскелет (van Bergen en Henegouwen et al., 1989; Rijken et al., 1991; 1995).

В качестве основного подхода при изучении передачи сигнала обычно исследуют механизмы активации сигнальных белков при действии внеклеточных лигандов. Любой 8 внутриклеточный сигнальный процесс имеет положительную и отрицательную регуляцию. Для понимания процесса проведения сигнала в целом, механизмы положительной и отрицательной регуляции имеют одинаково важное значение. Однако до сих пор данные, касающиеся процессов негативной регуляции немногочисленны, а обобщения практически отсутствуют. Вопрос о негативной регуляции ФЛСу1 неоднократно поднимался в литературе (Meisenhelger et al., 1989; Rhee, Choi, 1992; Lee, Rhee, 1995). Значимость этой проблемы определяется не только участием ФЛСу1 в проведении сигнала, но и нарушениями проведения сигнала в трансформированных клетках. Известно, что повышенная экспрессия ФЛСу1 является одним из признаков высокотрансформированных клеток. Поэтому определение факторов, регулирующих состояние ФЛСу1, в том числе внутриклеточный уровень этого фермента, представляется важным для понимания механизмов неопластической трансформации клеток.

ВЫВОДЫ.

1. Негативная регуляция рецептора ЭФР происходит с участием ФЛСу.

2. Обнаружены латентные сигнальные комплексы, образованные нефосфорилированными сигнальными белками. Образование латентных комплексов сигнальных белков служит, возможно, в качестве негативного регулятора, удерживая сигнальные белки от взаимодействия с активированными рецепторами или цитоплазматическими тирозинкиназами.

3. Действие ЭФР вызывает образование комплексов ФЛСу1 с активированным рецептором ЭФР. ФЛСу1 образует комплексы с интернализованным рецептором ЭФР. Интернализованные рецепторы ЭФР могут служить дополнительными внутриклеточными стартовыми точками проведения сигнала.

4. Негативная регуляция ФЛСу1 происходит по убиквитин-протеасомному пути. Действие ЭФР приводит к накоплению убиквитинилированной формы ФЛСу1. Обнаружен белок рбб, который является стабильным протеолитическим фрагментом ФЛСу1, сохраняющим способность к связыванию с рецептором ЭФР.

5. Действие ЭФР вызывает изменение внутриклеточной локализации, субъединичного состава и активности протеасом. Внутриклеточное распределение протеасом зависит от тирозинкиназной активности рецептора ЭФР,.

Заключение

.

Изучению проведения сигнала, запускаемого факторами роста, посвящено множество экспериментальных работ. Ключевое событие проведения сигнала, запускаемого ЭФРактивация рецепторов ЭФР и их автофосфорилирование, что приводит к запуску множественных сигнальных каскадов в клетке. Полученные нами экспериментальные данные свидетельствуют о том, что ФЛСу играет важную роль в проведении сигнала, запускаемого ЭФР, поскольку с участием этого фермента регулируется активность рецептора ЭФР, а следовательно и проведение сигнала в клетке.

Обычно, при изучении процесса передачи сигнала исследуют механизмы активации сигнальных белков при действии внеклеточных лигандов. Активированные рецепторы ЭФР образуют комплексы с белками, субстратами их тирозинкиназной активности, и фосфорилируют их по тирозину.

Исследование роли ФЛСу в проведении сигнала показало, что механизмы негативной регуляции этого фермента столь же значимы для процесса проведения сигнала, как и процессы активации.

Негативная регуляция ФЛСу обеспечивается различными клеточными процессами. Обнаружено существование латентных сигнальных комплексов, наиболее вероятная функция которыхпредотвращение взаимодействия сигнальных белков с активированными рецепторами или цитоплазматическими тирозинкиназами. ФЛСу ассоциируется с элементами цитоскелета: микрофиламентами и цитокератиновыми промежуточными филаментами, что можно рассматривать как механизм негативной регуляции ФЛСу, поскольку для локализованного на элементах цитоскелета белка недоступен субстрат ее ферментативной активности — PIP2. Компонентом негативной регуляции ФЛСу является обнаруженная нами протеасом-зависимая деградация этого фермента. И, наконец, выявленный протеолитический фрагмент ФЛСу — белок рбб, который способен к образованию комплексов с рецептором ЭФР, также может выступать в качестве негативного регулятора ФЛСу.

Особенностью опухолевых клеток является нарушение способности к ответу на действие ростовых факторов. Клетки А-431 — высокотрансформмрованная клеточная линия, по ряду признаков, в частности, способности к ответу на действие ЭФР сходны с нормальными клетками. Наши данные позволяют сделать вывод о том, что черты фенотипической нормализации клеток А-431 определяются активностью ФЛСу1.

В литературе имеются многочисленные доказательства того, что большинство опухолевых клеток естественного происхождения характеризуется повышенной экспрессией ФЛСу (Artega et al., 1991; Noh et al., 1998). В работе приведены доказательства того, что уровень экспрессии ФЛСу в клетке регулируется по убиквитин-протеасомному пути. Можно предположить, что негативная регуляция ФЛСу играет роль в изменении способности трансформированных клеток к ответу на действие ростовых факторов.

Обнаруженное нами изменение активности, субъединичного состава и внутриклеточной локализации протеасом при действии ЭФР позволяет рассматривать их как активный компонент проведения сигнала. Наши и литературные данные позволяют выдвинуть гипотезу, что действие внеклеточных лигандов одновременно с множественными сигнальными каскадами приводящими к активации сигнальных молекул, запускает и множественные процессы их негативной регуляции.

Показать весь текст

Список литературы

  1. А. Д., Соколова И. П., Корнилова Е. С., Никольский Н. Н. 1994. Зависимость эндоцитоза рецепторов эпидермального фактора роста от степени занятости рецепторов. Цитология. 36(7): 664−674.
  2. Е. Б., Василенко К. П., Тесленко П. В., Никольский Н. Н.1996. Активация транскрипционного фактора р91 интернализованным рецептором эпидермального фактора роста в клетках А-43! ДАН РАН, 346: 833−835.
  3. К. П., Бурова Е. Б., Цупкина Н. В., Никольский Н. Н. 1998. Интактная сеть микротрубочек необходима для ЭФР-зависимого транспорта транскрипционного фактора STAT1 в ядро клеток А-43! Цитология. 40(12): 1063−1069.
  4. К. П., Бурова Е. Б., Чупрета С. В., Никольский Н. Н.1997. Динамика ЭФР-зависимого ядерно-цитоплазматического перераспределения транскипционного фактора Statl в клетках А-43! Цитология. 39(2/3): 152−160.
  5. И. Б., Бурова Е. Б., Корнилова Е. С., Никольский Н. Н. 1993. Сравнительный анализ раннего и позднего эндоцитоза эпидермального фактора роста в клетках А-43! Цитология. 35(2): 60−67.
  6. В. Э., Туроверова Л. В., Константинова И. М., Пинаев Г. П. 1998. Взаимодействие просом с фибриллярным актином. Цитология. 40(2−3): 161−166.
  7. В. Э., Туроверова Л. В., Константинова И. М., Пинаев Г. П. 1998. 26S рибонукпеопротеиновый комплекс (26S протеасома) непосредственно взаимодействует с фибриллярным актином. Цитология. 40(7): 618−626.
  8. А. Л. 1998. Белки семейства STAT: роль в проведении сигнала. Цитология. 40(12): 1053−1062.
  9. И.М., Ветцкер Р., Бурова Е. В., Василенко К. П., Иванов В. А., Туроверова Л. В. Тесленко П.В., Никольский Н. Н. 1998. ЭФР-зависимая ассоциация 20S протеасом и специфических РНП с рецептором ЭФР в клетках А-431. Цитология 40(11): 954−957.
  10. И.М., Куличкова В. А., Туроверова Л. В. Петухова О. А., Кожухарова И. В., Тесленко Л. В. 1994. Эпидермальный фактор роста вызывает специфические изменения экспрессии малых РНК и набора малых РНП в клетках А-431. Цитология 36(2): 174−181.
  11. Е. С., Соркин А. Д., Никольский Н. Н. 1987. Динамика компартментализации эпидермального фактора роста в клетках А-431. Цитология. 29(8): 904−910.
  12. Н. Н. 1998. Stat-путь внутриклеточной сигнализации. Цитология. 40(12): 1050−1052.
  13. Н. Н., Соркин А. Д., Сорокин А. Б. 1987. Эпидермальный фактор роста. Л. Наука. 200с.
  14. А. Б., Тесленко Л. В., Никольский Н. Н. 1989. Рециклирование ЭФР-рецепторных комплексов. Цитология. 31(3): 300−311.
  15. Ahn S. J., Han S. J., Mo H. J., Chung J. K., Hong S. H., Park Т. K, Kim С .G. 1998. Interaction of phospholipase С gammal via its COOH-terminal SRC homology 2 domain with synaptojanin. Biochem. Biophys. Res. Commun. 244: 62−67.
  16. Aki M., Schimbara N., Takashina M., Akiyama K., Kayawa S., Tamura Т., Tanahashi N., Yoshimura Т., Tanaka K, Ichihara A. 1994. Interferon-gamma induces different subunit organization and functional diversity of proteasomes. J. Biochem. 115: 257−269.
  17. M., Heidarau M.A., Gutkind J.S., Zhang J., Ellmore N., Valius M., Kazlauskas A., Pierce J.N. 1997. PLCy activation is required for PDGF-R mitogenesis and monocytic differentiation of myeloid progenitor cells. Oncogene. 15: 585−589.
  18. Amano M., Mukai H., Ono Y., Chichara K., Matsui Т., Hamajiama Y., Okawa Т., Iwamoto A., Kaibuchi K. 1996. Identification of putative target of rho as the serine-threonine kinase protein kinase N. Science. 271: 648−650.
  19. D., Koch C. A., Grey L., Ellis С., Moran M. F., Pawson T. 1990. Binding of SH2 domains of phospholipase С gamma 1, GAP and Src to activated growth factor receptors. Science. 250: 979−982.
  20. Aravid L, Pontig C.P. 1998. Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Sci 7: 1250−1254.
  21. Are A.F., Galkin V. E., Pospelova Т., Pinaev G. 2000. The p65/Rel subunit of NF-kB interacts with actin-containing structures. Exp. Cell. Res. 256: 533−544.
  22. A. P., Simon J. M., Spahr P. F. 1987. A 20S particle ubiquitos from yast to human. J. Mol. Evol. 25: 141−150.
  23. Artega K. L., Johnson M. D" Toddorodo G., Caffey R. G., Carpenter G., Page D. L. 1991. Elevated content of the tyrosine kinase substrate phospholipase Cy1 in the primary human breast carcinomas. Proc. Natl. Acad. Sci. USA. 88: 10 435−10 439.
  24. Baass P. C., deGuglielmo G. M., Auther F., Posner В. I., Bergeron J. J. M. 1995. Compartmentalized signal trunsduction by receptor tyrosine kinases. Trends Cell Biol. 5: 465−470.
  25. Bae S. S., Lee Y. H., Chang J. S., Galadari S. H., Kim Y. S., Ryu S. H., Suh P. G. 1998b. Src homology domains of phospholipase С gamma 1 inhibit nerve growth factor-induced differentiation of PC12 cells. J. Neurochem. 71: 178−185.
  26. Bae Y. S., Cantley L. G., Chen C.S., Kim S. R., Kwon K. S., Rhee S.-G. 1998a. Activation of phospholipase С gamma by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273: 44 654 469.
  27. Bae Y.S., Sung J.Y., Kim K.J., Hur K.C., Kazlauskas A., Rhee S.G. 2000. Platelet-derived growth factor-induced H202 production requires activation of phosphatydylinositol 3kinase. J. Biol. Chem. 275: 10 527−10 531.
  28. Baribault H., Bloin R., Bourgon L, Marceau N. 1989. Epidermal growth factor induced selective phosphorylation of cultured rathepatocyte 55-kDa cytokeratin before filament reorganization and DNA synthesis. J. Cell. Biol. 109: 1665−1676.
  29. V., Schwartz M. 2000. Cell adhesion regulates ubiquitin-mediated degradation of the platelet-derived growth factor receptor. J. Biol. Chem. 275: 39 318−39 323.
  30. Barrett W.C., DeGuore J.P., Keng Y.-F., Zhang Zh.-Y., Yim M.B., Boon Chock P. 1999. Roles of superoxide radical anions in signal transduction mediated by reversible regulation of protein- tyrosine phosphatase 1B. J. Biol. Chem. 274: 34 543−34 546.
  31. Bar-Sagi D., Rotin D., BatzerA., Mandian V., Schlessinger J. 1993. SH3 domains direct cellular localization of signaling molecules. Cell. 74: 83−91. .
  32. W., Walz J., Zuhl F., Seemuller E. 1998. The proteasome: paradigm of a self-compartmentalizing protease. Cell. 92: 367−380.
  33. M. C., Abolafi Ch. M., Thompson J. F. 1997. Cytoskeletal association of epidermal growth factor receptor and signaling proteins is regulated by cell density in IEC-6 intestinal cells. J. Cell. Physiol. 172: 126−136.
  34. M. J. 1993. Inositol triphosphate and calcium signaling. Nature. 361: 315−325.
  35. Berryman M, Franck Z, Bretscher A. 1993 Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci. 105 (Pt4): 1025−1043.
  36. A., Chausovsky A., Becker E., Lyubimova A., Geiger B. 1996. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr.Biol. 6: 1279−1289
  37. U. S., Ivengar R. 1999. Emergent properties of networks of biological signaling pathways. Science. 283: 381−387.
  38. Blagosklonny M.V., Wu G.S., Omura S., el-Deiry W.S. 1996. Proteasome-dependent regulation of p21 WAF1/Cip1 expresson. Biochem. Biophys. Res. Commun. 227: 564−569.
  39. Boonstra J., van Maurik P., Verklen.A.J. Immunological labelling of cryosections and cryofractions. In: Cryotechniques in biological electron microscopy. Springer-Verlag Berlin Heidelberg. 1987. 216 230
  40. M. M. 1976. A rapid and sensetive method for the quantitation of micrigram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248−254.
  41. A. 1989. Rapid phosphorylation and reorganisation of ezrin and spectrin accompaning morphological changes induced in A-431 cells by epidermal growth factor. J. Cell. Biol. 108: 921−930.
  42. Briane D., Oliun-Coux M., VassyJ., OndarO., Huesca M., Scherrer K., FoucrierJ. 1992. Immunolocalization of specific types of prosomes close to bile canaliculi in fetal and rat liver. Eur. J. Cell. Biol. 57: 30−39.
  43. P., Fuertes G., Murray R.Z., Knecht E., Rechsteiner M.C., Hendil K.B., Tanaka K., Dyson J., Rivett J. 2000. Subcellular localization of proteasomees and their regulatory complexes in mammalian cells. Biochem J. 346: 155−161.
  44. Bureau J. P., Henry L, Baz A., Scherre k., Chateau M. 1997. Prosomes (proteasomes) changes during differentiation are related to the type of inducer. Mol. Biol. Rep. 25: 57−62.
  45. D., Gill G. N. 1992. Receptor tyrosine kinases. FASEB J. 6: 2332−2337.
  46. L. C., Auger K. R., Carpenter C., Duckworth В., Graziani A., Kapeller R., Soltoff S. 1991. Oncogenes and signal transduction. Cell. 64: 281−302.
  47. C.L., Cantley L.C. 1996. Phosphoinositide 3-kinase and the regulation of cell growth. Biochem Biophys. Acta 1288: 1411−1416.
  48. G. 1992. Receptor tyrosine kinases: src homolgy domains and signal transduction. FASEB J. 6: 3283−3289.
  49. Carraway K. L, Carraway С. A. C. 1995. Signaling, mitogenesis and the cytoskeleton: where the action is. BioEssays. 18: 171−175.
  50. R. J., Zheng Y. 1996. Dbl family of oncogenes. Curr. Opin. Cell. Biol. 8: 216−222.
  51. Chang J. S., Noh D. Y., Park I. A., Kim M. J., Song H., Ryu S. H., Suh P. G. 1997. Overexpression of phospholipase C-gamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57: 5465−5468.
  52. M. D. 1992. Growth factor signaling. Where the specificity is? Cell. 68: 995−997.
  53. Chardin P., Camonis J. H., Gale N. IN. Aelst L. V., Schlessinger J., Wigler M. H., Bar-Sagi D. 1993. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.Science. 260: 1338−1343.
  54. Chen Ph., Xie H., Wells A. 1996. Mitogenic signaling from the egf receptor is attenuated by a phospholipase С gamma /protein kinase С feedback mechanism. Mol. Biol. Cell. 6: 871−881.
  55. Chen R. H., Corban-Garcia S., Bar-Sagi D. 1997. The role of PH domain in the signal-dependent membrane targeting of sos. EMBO J., 16: 1351−1359.
  56. Chong L. D., Traynor-Kaplan A., Bokoh G. M., Schwartz M. A. 1994. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5 kinase in mammalian cells. Cell. 79: 507−513.
  57. A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell. 79: 13−21.
  58. M. E., Delaney Т., Rebecohi N. J. 1994. D-myo-inositol 1,4,5-trisphosphates inhibits binding of phospholipase С to bilayer membranes. J. Biol. Chem. 269: 1945−1954.
  59. Cifuentes M.E., Honkanen L, Rebechi M.J. 1993. Proteolytic fragments of phosphoinositide-specific phosppholipase C-delta 1. J. Biol. Chem. 268: 11 586−11 593.
  60. Claesson-Welsh L 1994. Platelet-derived growth factor receptor signals. J. Biol. Chem. 269: 32 023−32 026.
  61. J. G., Stern M. Y., Hervitz H. R. 1991. C. elegans cell-signaling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature. 356: 340−344.
  62. Cockroft S., Thomas G. M. H. 1992. Inositol lipid specific phospholipase С isozymes and their different regulation by receptors. Biochem. J. 288: 1−14
  63. Darnell J.E.Jr. 1997. STAT's and gene regulation. Science. 277: 1630−1635
  64. David M., Petrocoin III E., Benjamin C., Pine R., Weber M.J., Larner A.C. 1995. Requirement for MAP-kinase (ERK2) activity in interferon a and interferon p stimulated gene expression through STAT proteins. Science. 269: 1721−1723.
  65. DeMali K. A., Whieford С. C., Uiug E. Т., Kazlauskas A. 1997. Platelet-derived growth factor-dependent cellular transformation requires either phospholipase С y1 or phosphatydylinositol 3 kinase. J. Biol. Chem. 272: 9011−9018.
  66. DeMartino G.N., Slaughter C.A. 1999. The proteasome, a novel protease regulated by a multiple mechanisms. J. Biol. Chem. 274: 22 123−22 126.
  67. Den Hartig J. C., van Bergen en Henegouwen P. M. P., Verkleij A. J., Boonstra J. 1992. The EGF receptor is an actin-binding protein. J. Cell. Biol. 119: 349−355.
  68. L., Young D. F., Goodbourn S., Randall R.E. 1999. The V protein of simian virus 5 inhibits interferon signaling by targeting STAT1 for proteasome-mediated proteolysis. J. Virol. 73: 9928−9933.
  69. N., Irvine R. F. 1995. Phospholipid signaling. Cell. 80: 269 278.
  70. Djaballi K., de Nechaud В., Landon F., Portier M. M. 1997. AlphaB crystallin interacts with intermediate filaments in response to stress. J. Cell. Sci. 110: 2759−2769.
  71. Drexler H. C. A. 1997. Activation of cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci USA 94: 855−860.
  72. Drubin D. E., Mulholland J. Zhu Z., Botstein D. 1990. Homology of a yeast actin-binding protein to signal transduction proteins and myosin 1. Nature. 343: 288−290.
  73. W.C., Bennett R.G., Hamel F.G. 1998. Insulin acts intracellular^ on proteasomes through insulin-degrading enzyme. Biochem. Biophys Res. Commun. 244: 390−394.
  74. B.S. 1986. Alteration of the distribution of intermediate filaments in PtK1 cells by acrylamidel 1: effect on organization of cytoplasmic organelles. Cell. Motil. Cytoskeleton. 6: 15−24.
  75. Essen L.-O., Perisic O., Katan M., Wu Y., Roberts M. F., Williams R. L. 1997. Structural mapping of the catalytic mechanism for a mammalian phosphoinositide- specific phospholipase C. Biochemistry. 36: 1704−1718.
  76. M., Logan S. K., Lechto V. P., Baccante G., Lemmon M. A., Schlessinger J. 1998. Activation of phospholipase Cy1 by PI 3kinase-induced PH domain-mediated membrane targeting. EMBO J. 17:414−422.
  77. Fantl W. J., Escobedo J. A., Martin G. A., Turek Ch. W., del Rosario M., McCormic F., Williams L. T. 1992. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathway. Cell. 60: 413−423.
  78. FaroutL, Lamare M.C., Cardozo C., Harrison M., Briand Y., Briand M. 2000. Distributions of proteasomes and five proteolytic activities in rat tissues. Arch. Biochem. Biophys. 374: 207−212.
  79. S., Zheu M., Ни P., Ullrich A., Chaudhuri M., White M., Schlessinger J. 1993. SH2 domains exhibit high affinity binding to tyrosine phosphorylated peptides yet also exhibit rapid dissociation and exchange. Mol. Cell. Biol. 13: 1449−1455.
  80. Ferell K., Wilkinson C. R" Dubiel W., Gordon C. 2000. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci. 25: 83−88.
  81. E. H., Charbonneau H., Tomes N.K. 1991. Protein tyrosine phosphatase: a diverse family of intracellular and transmembrane enzymes. Science. 253: 401−406.
  82. FranckZ, Gary R, Bretscher A. 1993 Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. J Cell Sci. 105: 219−231.
  83. Fruman DA, Meyers RE, Cantley LC. 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67: 481−507.
  84. K., Endo Т., Immamura M., Takenawa T. 1994. a -actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J. Biol. Chem. 269: 1518−1522.
  85. Fukami K, Furuhashi K, Inagaki M., Endo Т., Hatano S., Takenawa T. 1992. Requirement of phosphatidylinositol 4,5-biphosphate for a-actinin function. Nature. 359: 150−152.
  86. K., Maruyama H., Takagi Y., Gopmi K. 1999. Direct proteasome inhibiton by clasto-lactacystin beta-lactone permits the detection of ubiquitinated p21 (waf1) in ML-1 cells. Biochem. Biophys. Acta 1451: 206−210.
  87. M., Gotoh Y., Nishida E. 1997. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16: 1901−1908.
  88. Gale N.W., Kaplan S., Lowenstein E.J., Schlessinger J., Bar-Sagi D. 1993. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature. 363: 88−92.
  89. В., Ayalon O. 1992. Cadherins. Annu. Rev. Cell. Biol. 8: 307−332.
  90. S. D., Maison C. 1996. Integration of intermediate filaments into cellular organelles. Intern. Rev. Cytol. 164: 91−138.
  91. H., Golding M. C., Papperkokj R., Gullick W.J. 1999. Intracellular movement of green fluorescent protein-tagged phosphatydylinositol 3-kinase in response to growth factor signaling. J. Cell. Biol. 146: 869−880.
  92. Goldman R. D, Khuon S., Chon Y. H., Steinert P. M. 1996. The function of intermediate filaments in cell shape and cytoskeletal integrity. J. Cell. Biol. 134: 971−984.
  93. Goldshmidt-Clermont P. L, Kim J. W., Machensky L. M., Rhee S.-G., Pollard T. D. 1991. Regulation of phospholipase Cy1 isozyme by profilin and tyrosine phosphorylation. Science. 251: 1231−1233.
  94. C., Taillandier D., Rechsteiner M. 1999 Assembly of the regulatory complex of 26S proteasome. Mol.Biol.Rep. 26: 15−19.
  95. T.C., Blenis J. 1997. Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases.Oncogene. 14: 1635−1642.
  96. В. M. 1996. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 84: 345−357.
  97. G.G., Cook T.A. 1999. Microtubules and signal transduction. Curr. Opin. Cell. Biol. 11: 89−94
  98. Haan S., Kortylewski M., Muller-Esterl W., Heinrich P.C., Schaper F. 2000. Cytoplasmic STAT proteins associate prior to activation. Biochem. J. 345:417−42!
  99. Harlan J.E., Hajduk P.J., Yoon H.S., Fesik S. l/l/. 1994. Pleckstrin himology domains bind to phosphatidilinositrol-4,5-biphosphate. Nature. 371: 168−170.
  100. R. J., Koide H.B., Hemmings B.A. 1993. Pleckstrin domain homology. Nature. 363: 309−310
  101. Haspel R. L., Salditt-Georgieff M., Darnell J. E. Jr. 1996. The rapid inactivation of nuclear tyrosine phosphorylated STAT1 depends upon a protein tyrosine phosphatase. EMBO J. 15: 6262−6268.
  102. С. H. 1991. SH2 domains: elements that control protein interactions during signal transduction. Trends Biol. Sci. 16: 450−452.
  103. Hernandez-Sotomayor S.H., Carpenter G. 1993. Non-catalytic activation of phospholipase C-gamma1 in vitro by epidermal growth factir receptor. Biochem. J. 293: 507−511.
  104. A. 1997. Roles of ubiquitin-mediated proteolysis in eel cycle control. Curr. Opin. Cell. Biol. 8: 788−799.
  105. Hess J. A., Ji Q. S., Carpenter G., Exton J. H. 1998. Analysis of platelet-derived growth factor-induced phospholipase D activation in mouse embryo fibroblasts lacking phospholipase c-gamma1. J. Biol. Chem. 273: 20 517−20 524.
  106. L. 1999. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 9: 107−112
  107. C. S., Treisman R. 1995. Transcriptional regulation by extracellular signals: Mechanisms and specificity. Cell. 80: 199−211.
  108. M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30: 405−439.
  109. Hong S. O., Ahn J. Y., Lee C. S., Kang M. S., Ha D. В., Tanaka K, Chung С. H. 1994. Tissue-specific expression of the subunits of chick 20S proteasomes. Biochem. Mol. Biol. Int. 32: 723−729.
  110. A. M., Kris R. M., Ullrich A., Schlessinger J. 1989. Evidence that autophosphorylation of solubilized receptor for epidermal growth factor is mediated by intermolecular cross-phosphorylation. Proc. Natl. Acad. Sci. USA. 86: 925−929.
  111. A. M., Schmidt A., Ullrich A., Schlessinger J. 1990. Evidence for epidermal growth factor (EGF) induced intramollecular autophosphorylation of the EGF receptor in living cells. Mol. Cell. Biol. 10:4035−4044.
  112. D. A., Chattopadhyay A., Carpenter G. 1999. The influence of deletion mutations on phospholipase C-gamma 1 activity. Arch. Biochem. Biophys. 361: 149−155.
  113. Horvai A.E., Xu L, Korzus ?, Braid G., Kalafus D., Mullen T.M., Rose D.W., Rosenfeld M.G., Glass Ch.K. 1997. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by СВР and p300. Proc. Natl. Acad. Sci. USA. 94: 1074−1079.
  114. Hsuan J. J., Tan S. H. 1997. Growth factor-dependent phosphoinositide signaling. Int. J. Biochem. Cell. Biol. 29: 415−435.
  115. S., Mohammadi M., Schlessinger J. 1998. Autoregulation mechanisms in protein-tyrosine kinases. J. Biol. Chem. 273: 1 198 711 990.
  116. Т., Cooper J. A. 1981. Epidermal growth factor induces rapid tyrosine phosphorilation of proteins in A431 human tumor cells. Cell. 24: 741−752.
  117. M.R., Rhodes M.R., Kirby M.L. 1997. Differential expression of a proteasomal subunit during chick development. Biochem. Biophys. Res. Commun. 234: 216−223.
  118. Hwang S.C., Jhon D.Y., Bae Y.S., Kim J.H., Rhee S.G. 1996. Activation of phospholipase C-gamma by the concerned action of tau proteins and arachidonic acid. J.Biol.Chem.271: 18 342−18 349.
  119. M., Macias M.J., Nigles M., Oschkinat H., Saraste M., Wilmanns M. 1995. Structure of the binding site for inositol phosphate in a PH domain. EMBO J. 14: 4676−4685.
  120. J.N. 1996. STAT’s and MAPK’s obligate or opportunistic partners in signaling. BioEssays. 18: 95−98.
  121. Y., Yendall W.A. 1996. Growth inhibitory concentrations of EGF induce p21(WAF1/CIP1) and alter cell cycle control in squamous carcinoma cells. Oncogene. 12: 2369−2375.
  122. P. A. 1994. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol. 56: 169 191.
  123. P. A., Stossel T. P. 1987. Modulation of gelsolin function by phosphatidylinositol-4,5 biphosphate. Nature. 325: 362−364.
  124. Jeffers M., Taylor G. A., Weidner к. M., Omura S., Vande Woude G. F. 1997. Degradation of the Met kinase receptor by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 17: 799−808.
  125. Ji Q. S., Ermini S., Bulida J., Sun F. L, Carpenter G. 1998. Epidermal growth factor signaling and mitogenesis in Plcgl null mouse embryonic fibroblasts. Mol. Biol. Cell. 9: 749−757.
  126. Ji Q-S., Winner G. E., Niswender K. D., Horstman D., Winsdom D., Magnuson M. A., Carpenter G. 1997. Essential role of tyrosine kinase substrate phospholipase С y1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA. 94: 2999−3003.
  127. G.L., Vaillancourt R.R. 1994. Sequential protein kinase reactions controlling cell growth and differentiation. Curr.Opin. Cell. Biol. 6.: 230−238.
  128. Jones GA, Carpenter G. 1993 The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem. 268: 20 845−20 850.
  129. A., Cooper J. A. 1993. Phosphorylation sites at the C-terminus of the platelet-derived growth factor receptor bind phospholipase Cy. Mol. Biol. Cell. 4: 49−57.
  130. A. 1994. Receptor tyrosine kinases and their targets. Curr. Opin. Genet. Dev. 4: 5−14.
  131. A., Kashishian A., Cooper J. A., Valius M. 1992. GAP and phosphatidyl inositol 3-kinase bind to distinct regions of the platelet-derived growth factor beta subunit. Mol. Cell. Biol. 12: 25 342 544.
  132. Kim H.K., Kim J. W., Zilberstein A., Margolis В., Kim J. G., Schlessinger J., Rhee S.-G. 1991. PDGF stimulation of inositol phospholipid hydrolisys requires PLCyl phosphorylation on tyrosine residues 783 and 1254. Cell. 65: 441−453.
  133. Kim M.J., Chang J.S., Park S.K., Hwang J.I., Ryu S.H., Suh P.G. 2000. Direct interaction of SOS1 Ras exchange protein with the SH3 domain of phospholipase C-gamma1. Biochemistry. 39: 8674−8682.
  134. Kim Т.К., Maniatis T. 1996. Regulation of interferon-gamma-activated STAT1 by the ubiquitin-proteasome pathway. Science. 273: 1717−1719.
  135. M. 1999. Intracellular proteplusis. Trends Cell. Biol. 9: M42-M45.
  136. C., Seelig A., Brecht В., Henkllin P., Kloetzel P.M., 1996. Functional analysis of eukaryotic 20S proteasome nuclear localization signal. Exp. Cell. Res. 225: 67−74.
  137. C. A., Anderson D., Moran M. F., Ellis R. R., Pawson T. 1991. SH2 and SH3 domains: elements that control interaction of cytoplasmic proteins. Science. 65: 441−453.
  138. Konishi H, Kuroda S, Kikkawa U. 1994 The pleckstrin homology domain of RAC protein kinase associates with the regulatory domain of protein kinase С zeta. Biochem Biophys Res Commun. 205:17 701 775.
  139. I. M., Kulichkova V. A., Evteeva I. N., Mittenberg A. G., Volkova I. V., Ermolaeva J. В., Gause L N. 1999. The specific endoribonuclease activity of small nuclear and cytoplasmic aRNPs. FEBS Lett. 462: 407−410.
  140. E.G., Sorkina Т., Beguinot Т., Sorkin A. 1996. Carboxy-terminal receptor domain 1022−1123is responsible for the lysosomal targeting of EGF receptor. J. Biol. Chem. 271: 30 340−30 346.
  141. Ku N-O., Zhou X., Toivola D.M., Omary B. 1999. The cytosceleton of digestive epitelia in health and desease. Am.J.Physiol. 277: 11 081 137
  142. U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4.Nature. 227: 680−685.
  143. Lai Y. K, Lee W. C., Chen K. D. 1993. Vimentin serves as a phosphate sink during the apparent activation of protein kinases by okadic acid in mammalian cells. J. Cell. Biochem. 53: 161−168.
  144. Lamarche N., Tapon N., Stowers L, Burbelo P. В., Aspenstrom P., Bridges Т.- Chant J., Hall A. 1996. Rac and cdc42 induce actin polimerization and G1 cell cycle progression independent of p65 PAK and the JNK/SAPK MAPkinase cascade. Cell. 87: 519−529.
  145. C.A., Shen Т., Horwitz KB. 2000. Phosphorylation of human progesteron receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc. Natl. Acad. Sci. USA. 97: 1032−1037.
  146. Lee D. H., Goldfarb A. L. 1998. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8: 397−403.
  147. Lee S. В., Rhee S-.G. 1995. Significance of PIP2 hydrolysis and regulation of phospholipase С isozymes. Curr. Opin. Cell. Biol. 7: 183 189.
  148. Lee S. H., Kwon K.S., Kim S-R., Rhee S-G. 1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A-431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273: 1 536 615 372.
  149. Lee Y.H., Lee H.J., Lee S.J., Min D.S., Baek S.H., Kim Y.S., Ryu S.H., Suh P.G. 1995. Down-regulation of phospholipase C-gamma1 during the differentiation of U937 cells. FEBS Lett. 358: 105−108.
  150. M. A., Falasca M., Ferguson К. M., Schlessinger J. 1997a. Regulatory requirement of signaling molecules to the cell membrane by plekstrin-homology domains. Trends Cell. Biol. 7: 237 242.
  151. Lemmon M. A., Ferguson К. M., O’Brien R., Sigler P. В., Schlessinger J. 1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92: 10 472 -10 476.
  152. M. A., Ferguson К. M., Schlessinger J. 1997b. PH domains- diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 85: 621−624.
  153. Lenard D. M., Nawaz Z., Smith C. L., O’Malley B. W. 2000. The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor alpha transactivation. Mol. Biol. 5: 939−948.
  154. Leung Т., Manser E., Tan L, Lirn L. 1995. A novel serine-threonine kinase binding the ras-related rhoA GTPase which translocates the kinase to peripheral membranes. J. Biol. Chem. 270: 29 051−29 054.
  155. Li N., BatzerA., Daly R., Yanik V., Skolnik E., Chardin P., Bar-Sagi D., Margolis В., Schlessinger J. 1993. Guanine-nucleotide -releasing factors hSos binds Grb2 and links receptor tyrosine kinases to ras signalling. Nature. 363: 85−88.
  156. Li W., Ни P., Skolnik E. Y., Ullrich A., Schlessinger J. 1992. The SH2 and SH3 domain- containing Nek protein is oncogenic and a common target for phosphorylation by different surface receptors. Mol. Cell. Biol. 12: 5824−5833.
  157. Lu Z, Lin D., Homia A., Davonish W., Pegano M., Foster D. A. 1998. Activation of protein kinase С triggers its ubiquitination and degradation. Mol. Cell. Biol. 18: 839−845.
  158. L. M., Hall A. 1996. Rho: a connection between membrane receptor signaling and the cytoskeleton. Trends Cell. Biol. 6: 304−310.
  159. Machiels B.M., Heuflig M.E., Schutte В., van Engeland M., Broiers J.L., Ramaekers F.C. 1996. Subcellular localization of proteasomes in apoptotic lung tumor cells and persistence as compared to intermediate filaments. Eur. J. Cell. Biol. 70: 250−259.
  160. Mackay D. J. C., Esch F., Furthmayr H., Hall A. 1997. Rho- and Rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/Radexin/ moezin proteins. J. Cell. Biol. 138: 927−938.
  161. MacKeven I. N., Guo G. G., Fried V. A., Etlinger J. D., SehgalP. B. 1999. Cellular physiology of STAT3: where’s the cytoplasmic monomer? J. Biol. Chem. 274: 25 499−25 509.
  162. Margolis В., Li N., Mohamrnadi M., Hurwitz D. .R., Zilberstein A., Ullrich A., Schlessinger J. 1990a. The tyrosine phosphorylated carboxyterrhinus of EGF receptor is a binding site for GAP and PLCy. EMBO J. 9: 4375−4380.
  163. В., Rhee S.G., Felder S., Mervic M., Lyall R., Levitzki A., Ullrich A., Zilberstein A., Schlessinger J. 1989. EGF induces tyrosine phosphorylation of phospholipase C-y: a potential mechanism of EGF receptor signaling. Cell. 57: 1101−1107.
  164. Margolis В., Zilberstein A., Franks C., Felder S., Kremer S., Ullrich A., Rhee S.-G., Skorecki K., Schlessinger J. 1990b. Effect of phospholipase C-y overexpression on PDGF-induced second messengers and mitogenesis. Science. 248: 607−610.
  165. C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal regulated kinase activation. Cell. 27: 179−185.
  166. M., Mayer B. J., Fukui Y., Hanafusa H. 1990. Binding of oncoprotein p47gag-crk, to a broad range of phosphotyrosine-containg proteins. Science. 248: 1537−1539.
  167. К., Shibasaki F., Shibata M., Takenawa T. 1993. Ash/Grb-2, a SH2/SH3-containing protein, couples to signaling for mitogenesis and cytoskeleton reorganization by EGF and PDGF. EMBO J. 12: 3467−3473.
  168. May M.J., Ghosh S. 1998. Signal transduction through NF-kB. Immunol. Today. 19: 80−88.
  169. B. J., Baltimore D. 1993. Signaling through SH2 and SH3 domains. Trends Cell. Biol. 3: 8−13.
  170. Mayer B. J., Ren R., Clark K. L, Baltimore D. 1993. A putative modular domain present in diverse signaling molecules. Cell 73: 629 630.
  171. McBride K., Rhee S.-G., Jaken S. 1991. Immunocytochermical localization of phospholipase Cy1 in rat embryo fibroblasts. Proc. Natl. Acad. Sci. USA. 88:7111−7115.
  172. Meisenhelder J., Suh P.-G., Rhee S.-G. Hunter T. 1989. Phospholipase С is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell. 57: 1109−1122.
  173. E., Gilman M., Natesan S. 1999. Proteasome-mediated degradation of transcriptional activators correlates with activation domain potency in vivo. EMBO J. 18: 6439−6447.
  174. Moran M. F., Koch C. A., Anderson D., Ellis C., England L, Martin G. S., Pawson T. 1990. Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc. Nat. Acad. Sci. USA. 87: 8622−8626.
  175. S., Tanaka K., Omura S., Saitop Y. 1995. Degradation process of ligand-stimulated platelet-derived growth factor beta-receptor involves ubiquitin-proteasome proteolytic pathway. J. Biol. Chem. 270: 29 447−29 452.
  176. D. K., Kaplan D. R., Rhee S. G., Williams L. T. 1990. Platelet-derived growth factor (PDGF)-dependent association of phospholipase C-y with the PDGF receptor signaling complex. Mol. Cel. Biol. 10: 2359−2366.
  177. D. G., Musci M. A., Ross S. E., Koretzky G. A. 1996. Tyrosine phosphorylation of grb2-associated proteins correlates with phospholipase С gammal activation in T cells. Mol. Cell. Biol. 16: 2823−2829.
  178. A., Gibson Т., Rice P., Thompson J., Sarasate M. 1993. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18: 343−348.
  179. A., Noble M., Paupti R., Wiereng A. R., Sarasate M. 1992. Crystal structure of a Src homology 3 (SH3 domain). Nature. 359: 851−855.
  180. P., Amieva M. R., Furthmayr R. 1995. Phosphorylation of threonine 558 in carboxy-terminal actin-binding domain of moesin by trombin activation of human platelets. J. Biol. Chem. 270: 3 137 731 385.
  181. D., Jiang H., Monaco J. J. 1996. Identification of MECL-1 (LMP-10) as third IFN-gamma-inducible proteasoma subunit. J. Immunol. 156: 2361−2364.
  182. Nawaz Z., Lonard DM., Dennis A.P., Smith C.L., O’Malley B.W. 1999. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. USA. 96: 1858−1862.
  183. Nederlof P. M, Wang H.R., Baumeister W. 1995. Nuclear localization signals of human and Termoplasma proteasomal alpha subunits are functional in vitro. Proc. Natl. Acad. Sci. USA 92: 1 206 012 064
  184. N. N. 1991. Tyrosine kinase activity of internalized epidermal growth factor receptor. Biomed. Sci. 2: 339−343.
  185. Nishimura R., Li W., Kashishian A., Mondino A., Zhou M., Cooper J., Schlessinger J. 1993. Two signaling molecules share aphosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol. Cell. Biol. 13: 6889−6896.
  186. Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 258: 607 614.
  187. C. D., Hall A. 1995. Rho, Rac and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress-fibres, lamelipodia and filopodia. Cell. 81: 53−62.
  188. Noh D.Y., Kang H.S., Kim Y.C., Youn Y.K., Oh S.K., Choe K.J., Park LA., Ryu S.H., Suh P.DG. 1998. Expression of phospholipase С gamma 1 and its transcriptional regulators in breast cancer tissues. Anticancer Res. 18: 2643−2648.
  189. Noh D.Y., Shin S. H., Rhee S.-G. 1995. Phosphoinositide-specific phospholipase С and mitogenic signaling. Biochem. Biophys. Acta. 1242: 99−113.
  190. Northwang H.G., Coux O., Bey P., Scherrer K. 1992. Prosomes and their multicatalytic proteinase activity. Eur. J. Biochem. 207: 621 630.
  191. Obermeier A., HalfterH., Wiesemuller K.-H., Jung G., Schlessinger J., Ullrich A. 1993. Tyrosine 785 is a major determinant of Trk-substrate interaction. EMBO J. 12: 933−941.
  192. A., Tinhofer I., Grunieke H. H., Ullrich A. 1996. Transforming potentials of epidermal growth factor and nerve growth factor receptors inversely correlates with phospholipase Cgamma affinity and signal activation. EMBO J. 15: 73−82.
  193. Oda H., Kumar S., Howley P.M. 1999. Regulation of the SRC family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc. Natl. Acad. Sci USA 96: 9557−9562.
  194. Ogiso Y., Tomido A., Kim H.D., Tsuruo T. 1999. Glucose starvation and hypoxia induce nuclear accumulation of proteasome in cancer cells. Biochem. Biophys. Res. Commun. 258: 448−452.
  195. M., Gamou S., Shimizu N. 1998. Antisense olgonucleotide of WAF1 gene prevents EGF-induced cell-cycle arrest in A-431 cells. Oncogene. 16: 797−802.
  196. Olink-Coux M., Arcangeletti M.C., Minisini R., Huesca M., Chezzi C., Scherrer К 1994. Cytolocation of prosome antigenes on intermediate filament subnetworks of cytokeratin, vimentin and desmin type. J. Cell. Sci. 107: 353−366.
  197. A., Rivett A.J., Thomson S., Hendil KB., Butcher G.W., Fuertas G., Knecht E. 1996. Subpopulation of proteasome in rat liver nuclei, microsomes and cytosol. Biochem. J. 316: 401−407.
  198. Pappa H., Murray-Rust J., Dekker L. V., Parker P. J., Mcdonald N. Q. 1998. Crystal structure of the C2 domain from protein kinase C-delta. Structure. 6: 885−894.
  199. P. J., Hemmings B. A., Gierschik P. 1994. PH domain and phospholipases a meaningful relationship? Trends Biochem. Sci. 19: 54−55.
  200. Paterson H. F., Savopoulus J. W., Perisic O., Elli S. M. V., Williams R. L, Katan M. 1995. Phospholipase C6 requires a plecstrin homology domain for interaction with plasma membrane. Biochem. J. 312: 661 666.
  201. T. 1995. Protein modules and signaling networks. Nature. 373: 573−579.
  202. Т., Gish G. D. 1992. SH2 and SH3 domains: from structure to function. Cell. 71: 359−362.
  203. Т., Schlessinger J. 1993. SH2 and SH3 domains. Curr. Biol. 3: 434−442.
  204. Т., Scott J. D. 1997. Signaling through scaffold, anchoring and adaptor proteins. Science. 278: 2075−2080.
  205. Payrastre В., Nievers M., Boonstra J., Berton M., Verkley A. J., van Bergen en Henegouven P.M.P. 1992. A different location of phosphoinositide kinase, diacylglycerol and phospholipase С in the nuclear matrix. J. Biol. Chem. 267: 5078−5084.
  206. В., Plantavid M., Breton M., Chambaz E.M., Chap H. 1990. Relationship between phosphoinositide kinase activities and protein tyrosine phosphorylation in plasma membrane from A-431 cells. Biochem. J. 272: 665−670.
  207. Pei Z, Maloney J. A., Yang L, Williamson J. R. 1997. A new function of phospholipase C-gamma1: coupling to the adaptor protein GRB2. Arch. Biochem. Biophys. 345: 103−110.
  208. Pei Z., Williamson J. R. 1998. Mutations of residues Tyr 771 and Tyr 783 of phospholipase C-gamma 1 have different effects on cell actin-cytoskeleton organization and cell proliferation. FEBS Lett. 423: 53−56.
  209. K., Amieva M. R., Strassel C. P., Nauseef W. M., Furthmayer H., Luna E. J. 1995. Moesin, ezrin and p205 are actin-binding proteins associated with neutrophil plasma membrane. Mol. Biol. Cell. 6: 247−259.
  210. Pffefer L.M., Mullersman J.E., Pffefer S.R., Murti A., Shi W., Yang C.H. 1997. STAT3 as an adaptor to couple phosphatidyl! nositol 3kinase to the IFNAR1 chain of the typel interferon receptor. Science. 276: 1418−1420.
  211. С. M. 1997. Targeting of substrates to the 26 S proteasome. FASEB J. 11: 1056−1066.
  212. Pitze F., Dantes A., Fuchs TBaumeister W.: Amsterdam A. 1996. Removal of proteasomes from the nucleus and the accumulation in apoptotic blebs during programmed cell death. FEBS Lett. 394: 47−50.
  213. R., Cancelli I., С aval I a P., Borto/otto S., Dominguez J., Dretta G.F., Rivett A.J. 1998. Intracellular distribution of proteasomes. Curr. Opin. Immunol. 10: 110−114.
  214. M. N., Petit F., Buri J., Breand Y., Schmidt H. P. 1995. Identification and initial characterization of a specific proteasome (prosome) associated RNAase activity. J. Biol. Chem. 270:2 202 522 028.
  215. Rameh L.E., Rhee S.-G., Spokes K., Kazlauskas A., Cantley L.C., Cantley L.G. 1998. Phosphoinosiyide 3-kinase regulates phospholipase Су-mediated calcium signaling. J. Biol. Chem. 273: 23 750−23 757.
  216. K.B., Keshamouni V.G., Chen Y.G. 1999. The level of tyrosine kinase activity regulates the expression of p21/WAF1 in cancer cells. Int. J. Oncol. 15: 301−306.
  217. Reits E.A.J., Benham A.M., Plougastel В., Neefies J., Trowsdale J. 1997. Dynamics of proteasome distribution in living cells. EMBO J. 16: 6087−6094.
  218. Ren R., Mayer B. J., Cicchetti P., Baltimore D. 1993. Identification of a ten-aminoacid prolin rich SH3 binding sites. Science. 259: 11 571 161.
  219. Rhee S, G., Choi K. D. 1992. Regulation of inositol phospholipid-specific phospholipase С isozymes. J. Biol. Chem. 267: 12 393−12 396.
  220. Rhee S.-G. 1991. Inositol phospholipid-specific phospholipase C: interaction of the isoform with tyrosine kinase. Trends Biol.Sci. 16: 297−301.
  221. Rhee S.-G., Bae Y. S. 1997. Regulation of phosphoinositide-specific phospholipase С isozymes. J. Biol. Chem. 272: 15 045−15 048.
  222. Rhee S.-G., Suh S.,. Ryu H" Lee S. L. 1989. Studies of inositol phospholipid-specific phospholipase C. Science. 244: 546−550.
  223. A. J., Hall A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibres in response to growth factors. Cell 70: 389−399.
  224. D. J., Stern D. F. 1998. Specificity within the EGF family/ErbB receptor family signaling network. BioAssays 29: 41−48.
  225. Rijken P. J., Hage W. H., van Bergen en Henegouven P. M. P., Verkleij A. J., Boonstra J. 1991. Epidermal growth factor induces rapidreorganization of the actin microfilament system in human A-431 cells. J. Cell. Sci. 100: 491−499.
  226. Rijken R. J., van Hal G.J., van der Heyden M.A., Verkleij A.J., Boonstra J. 1998. Actin polymerization is requred for negative feedback regulation of epidermal growth-factor-induced signal transduction. Exp. Cell. Res. 243: 254−262.
  227. A. J., Palmer A., Knecht E. 1992. Electron microscopic localization of the multicatalytic proteinase complex in rat liver and cultured cells. J. Histochem. Cytochem. 40: 1165−1172.
  228. A.J. 1993.Characterization of proteasomes isolated from rat liver. Enz. Protein. 47: 210−219.
  229. A.J. 1998. Intracellular distribution of proteasomes. Curr. Opin. Immunol. 10: 110−114.
  230. A.J., Maison G. G., Thomson S., Pike A.M., Savory P.J., Murray R. Z. 1995. Catalytic components of prteasomes and the regulation of proteinase activity. Mol. Biol. Rep. 21: 35−41.
  231. J., Kelly R. B. 1998. Dap 160, a neuronal specific eps15 homology and multiple SH3-domain containing protein that interacts Drosophila dynamin. J. Biol. Chem. 273: 19 108−19 119.
  232. D., Canella D., Boulaire J., Fitzgerald P., Fotedar A., Fotedar R. 1999. Growth inhibition by CDK-cyclin and RCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene. 18: 3290−3302.
  233. Rozakis-Adcock M., Fernley R., Wade J., Pawson Т., Bowtell D. 1993. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosI. Nature. 363: 83−85.
  234. H. В., Gilman M. Z. 1993. Cell-free activation of a DNA-binding protein by EGF. Nature. 362: 79−83.
  235. H. В., Shuai K., Darnell J. E. Jr., Gilmon H. Z. 1993. A common nuclear signal transduction pathway activated by growth factor and cytocine receptor. Science. 261: 1739−1744.
  236. I., Stone J.C., Pawson T. 1986. A noncatalyic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transformingactivity of Fujinami sarcoma virus p130 gag-fps. Moll. Cell. Biol. 6.: 4396−4408.
  237. L. 1998. The role of calcium in the cell cycle: facts and hypothesis. Biochem. Biophys. Res. Commun. 244: 317−324.
  238. K. 1990. Proteasomes, subcomplexes of untranslated messenger RNP. Mol. Biol. Rep. 1: 1−9.
  239. J. 1997. Phospholipase Cy activation and phosphoinositide hydrolysis are essential for embryonal development. Proc. Natl. Acad. Sci. USA. 94: 2798−2799.
  240. J., Geiger B. 1981. Epidermal growth factor induces redistribution of actin and a-actinin in human epidermal carcinoma cells. Exp. Cell. Res. 134: 273−279.
  241. J., Ullrich A. 1992. Growth factor signaling by receptor tyrosine kinases. Neuron. 9: 383−391.
  242. Seedorf К, Kostka G., Lammers R., Bashkin P., Daly R., Burgess W. H., van der Bliek A., Schlessinger J., Ullrich A. 1994. Dynamin binds to SH3 domain of phospholipase Cy and GRB2. J. Biol. Chem. 269: 16 009−16 014.
  243. K., Shearman M., Ullrich A. 1995. Rapid and long-term effects on protein kinase С in receptor tyrosine kinase phosphorylation and degradation. J. Biol. Chem. 270: 18 953−18 960.
  244. Seeger M., Kraft R., Ferell K, Bech-Otschur D., Dumdey R., Schade R., Gordon C., Naumann M., Dubiel W. 1998. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 12: 469−478.
  245. A.S., Wang W., Bishay Y., Cohen S., Egan S.E. 1999. The EH domain and SH3-domain of Ese protein regulates endocytosis by linking to dynamin and Eps15. EMBO J. 18: 1159−1171.
  246. R.J., Henry M., Solomon F., Jackes T. 1998. Rho-A -dependent phosphorylation and localization of ERM proteins into apical membrane protrusions in fibroblasts. Mol. Biol. Cell. 9: 403−419.
  247. R.J., Singer J.D., Swanger J., Smetherman M., Roberts J.M., Clurman B.E. 2000. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell. 5: 403−410.
  248. Shen S. H., Bastein В. I., Posner В. IChretin P. 1991. A protein tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature. 352: 736−739.
  249. M., Kariya Ki., Liao Y., Ни С. D., Watari Y., Goshima M., Shima P., Kataoka T.1998. Identification of PLC210, a Caenorhabditis elegans phospholipase C, as a putative effector of Ras. J. Biol. Chem. 273: 6218−6222.
  250. Shih S.C., Sloper-mould K.E., Hicke L. 2000. Monoubiquitin carries a novel internalization signal that appended to activated receptors. EMBO J. 19: 187−192.
  251. Simpson F., Hussian N. K, Qualmann В., Kelly R. В., Key В. K, McPherson P. S., Schmidt S. 1999. SH3-domain -containing proteins function at distinct steps in clathrin-vesicle formation. Nature Cell. Biol. 1: 119−124.
  252. W. D., Brown H. A., Sternweis P. C. 1997. Regulation- of eukariotic phosphatidylinositol-specific phospholipase С and phospholipase D. Annu. Rev. Biochem. 66: 475−509.
  253. Smith M. R., Ryu S. H., Suh P. G., Rhee S. G., Kung H. F. 1998. S-phase induction and transformation of quiscent NIH 3T3 cells by microinjection of phospholipase C. Proc. Natl. Acad. Sci. USA 86: 3659−3663.
  254. Smith M. R., Ya-Lun Liu, Mattews N. Т., Rhee S-G., Sung W .K, Kung H. 1994. Phospholipase C-y1 can induce DNA synthesis by amechanism independent of its lipase activity. Proc. Natl. Acad. Sci. USA. 91: 6554−6558.
  255. Soler C., Beguinot L, Carpenter G. 1994. Individal epidermal growth factor receptor autophosphorylation sites do not stringently define association motifs for several SH2-containing proteins. J. Biol. Chem. 269: 12 320−12 324.
  256. A. D., Kornilova E. S., Teslenko L. V., Sorokin А. В., Nikolsky N. N. 1988. Recycling of epidermal growth factor receptor complexes in A-431 cells. Biochem. Biophys. Acta. 1011: 88−96.
  257. A., Gineitis D., Copeland J., Triesman R. 1999. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics, Cell 98: 159−169.
  258. Stayffer Т. P., Ahn S., Mayer T. 1998. Receptor-induced transient reduction in plasma membrane Ptdlns (4,5)P2 concentration monitored in living cells. Curr. Biol. 8: 343−346.
  259. L., Jackson Т., Hawkins P. T. 1993. Agonist-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate: a new intracellular signaling system. Biochem. Biophys. Acta. 1179: 27−75.
  260. P. IN., Horvitz H. R. 1991. Signal transduction during C. elegans vulval induction. Trends Genet. 7: 366−371.
  261. P. C., Smrcka A. V. 1992. Regulation of phospholipase С by G proteins. Trends Biochem. Sci. 17: 502−506.
  262. R., Kloetzel P. M. 1996. Cytokine induce changes in proteasome subunit composition are concentration dependent. Biol. Chem. 377: 571−577.
  263. Strickland E., Hakala K, Thomas P. J., DeMartino G. N. 2000. Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26S protasome. J. Biol. Chem. 275: 5565−5572.
  264. K., Takahashi K. 7996.lnhibition of demicolcin-induced DNA synthesis by inhibitors of phospholipase С and protein kinase C. Biochem, Biophys. Res. Commun. 219: 163−167.
  265. Sylvia V., Curtin G., Norman /., Stec J., Dusbee D. 1988. Activation of a low specific activity form of DNA polymerase a by inositol 1,4-biphosphate. Cell. 54: 651−658.
  266. M. 1996. Rho family GTPases: the cytoskeleton and beyond. TIBS 21: 178−18!
  267. K. 1998. Proteasomes: structure and biology. J. Biochem. 123: 195−204.
  268. K., Tsurimi C. 1997. The 26S proteasome: subunits and function. Mol. Biol. Rep. 24: 3−1!
  269. J. R., Gaines P. C., Ebert P., Carlson J. R. 1998. small wing encodes a phospholipase C-(gamma) that acts as a negative regulator of R7 development in Drosophila. Development. 125: 50 335 042.
  270. Thomas G.M.H., Cunningham E., Fensome A., Ball A., Totty N.F., Truong O., Hsuan J.J., Cockroft Sh. 1993. An essential role forphosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signaling. Cell. 74:919−928.
  271. Thrower J.S., Hoffman L, Rechsteiner M., Pickert CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19: 94 102.
  272. Tokumoto M, Yamaguchi A, Nagahama Y, Tokumoto T. 2000 Identification of the goldfish 20S proteasome beta6 subunit bound to nuclear matrix. FEBS Lett. 472: 62−66.
  273. K. P., Cantley L. C., Carpenter G. 1995. Rho family GTPases bind to phosphoinositide kinases. J. Biol. Chem. 270: 17 656−17 659.
  274. K., Inglese J., Pitcher J. A., Shaw G., Lefkovitcz R. J. 1994. Binding of G protein py-subunits to plekstrin homology domains. J. Biol. Chem. 269: 10 217−10 220.
  275. M., Gotoh N., Handa H., Shibuya M. 1998. Involvement of MAP kinase-independent protein kinase С signaling pathway in the EGF-induced p21 (WAF1/Cip1) expression and growth inhibition of A431 cells. Biochem. Biophys. Res. Commun. 250: 430−435.
  276. S., Simon M. I., Witte O. N., Katz A. 1994. Binding of py-subunits of heteromeric G proteins to the PH domain of Burtons tyrosine kinase. Proc. Natl. Acad. Sci. USA 91:11 256−11 260.
  277. Turunen O, Wahlstrom T, Vaheri A. 1994. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol. 126: 1445−1453.
  278. A., Schlessinger J. 1990. Signal transduction by receptor with tyrosine kinase activity. Cell. 61: 203−212.
  279. A. 1997. The N-end rule pathway of protein degradation. Genes Cells. 1: 13−28.
  280. M., Carpenter G. 1997. Constitutive proteolysis of the Erb B4 receptor tyrosine kinase by a uniq, sequental mechanism. J. Cell. Biol. 139: 995−1003.
  281. Q. С., Cochet С., Filhol О., Chang С-P., Rhee S.-G., Gill G. M. 1992. A site of tyrosine phosphorylation in the c-terminus of the EGF-receptor is required to activate phospholipase C. Mol. Cell. Biol. 12: 128−135.
  282. Venema R.C., Yu H., Venema V. J., Schieffer В., Harp J. В., Ling B. N., Eaton D. C., Marrero M. B. 1998a. Angiotensin 11-induced association of phospholipase С gammal with G-protein-coupled AT1 receptor. J. Biol. Chem. 273: 7703−7708.
  283. Vogel W., Lammers R., Huang J,. Ullrich A. 1993. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science. 259: 1611−1614.
  284. Wahl M. I., Jones G. A., Nishibe S., Rhee S G., Carpenter G. 1992. Growth factor stimulation of phospholipase C-y1 activity. J. Biol. Chem. 267: 10 447−10 456.
  285. Wahl M. I., Nishibe S., Kim J. W., Rhee S. G., Carpenter G. 1990. Identification of two epidermal growth factor sensitive tyrosine phosphorylation sites of phospholipase C-y1 in intact HSC-1 cells. J. Biol. Chem. 265: 3944−3948.
  286. Wang D. S" Miller R., Shaw G. 1996. The plekstrin homology domain of human ВШ1 spectrin is targeted to the plasma membrane in vivo. Biochem. Biophys. Res. Commun. 225:420−426.
  287. H. R., Kania M., Baumeister W., Nederlof P. 1997. Import of human and Thermoplasia proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur. J. Cell. Biol. 73: 105−113.
  288. Wang Z, Gluck S., Moran M. F. 1998. Requirement for phospholipase C-gamma1 enzymatic activity in growth factor induced mitogenesis. Mol. Cell. Biol. 18: 590−597
  289. Wei N., Deng W. 1999. Making sence of the COP9-signalosome. A regulatory complex conserved from Arabidopsis to human. Trends Genet. 15: 98−103.
  290. Wiegant F. A. C., Block F. J., Defize L. H. K., Linnemas W. A. M., Verkley A. J., Boonstra J. 1986. Epidermal growth factor receptor associated to cytoskeletal elements of epidermoid carcinoma (A431) cells. J. Cell. Biol. 103: 87−94.
  291. Xie Z, Bickle D. D. 1999. Phospholipase C-gamma1 is required for calcium-induced keratinocyte differentiation. J. Biol. Chem. 274: 20 421−20 424.
  292. Yang L, Rhee S.G., Williamson J. R. 1994. Epidermal growth factor-induced activation and translocation of phospholipase Cy1 to the cytoskeleton in rat hepatocytes. J. Biol. Chem. 269: 7156−7162.
  293. Yen С. H., Yang Y. C., Ruscetti S. K., Kirken R. A., Li С. C. 2000. Involvement of the ubiquitin-proteasome pathway in the degaradationof nontyrosine kinase-type cytokine receptors of IL-9, IL-2 and erythropoietin. J. Immunol. 165: 6372−6380.
  294. Yeo E.J., Provost J.J., Exton J.H. 1997. Dissociation of tyrosine phosphorylation and activation of phosphoinositide phospholipase С induced by the protein kinase inhibitor Ro-31−8220. Biochem. Biophys. Acta. 1356: 308−320.
  295. Yi Т., Clevland J. L, Ihle J. N. 1992. Protein tyrosin phosphatase containing SH2 domains- characterization, preferential expression in hematopoetic cells, and localization to human chromosome 12p12-p13. Mol. Cell. Biol. 12: 836−846.
  296. Yu H., Fukuiami K., Itoh Т., Takenawa T. 1998. Phosphorylation of phospholipase С gammal on tyrosine residue 783 by platelet-derived growth factor regulates reorganization of cytoskeleton. Exp. Cell. Res. 243: 113−122.
  297. Yu H., Kaung G., Kabayashi S., Kopito R. R. 1997. Cytosolic degradation of T-cell receptor alpha chains by the proteasome. J. Biol. Chem. 272: 20 800−20 804
  298. Yu H., Rosen M. K., Bam Shin Т., Siedel-Dugon C., Brugge J. S., Schriber S. L. 1993. Solution structure of the SH3 domain of Src and identification of its ligand binding site. Science. 258: 1665−1668.
  299. H., Haff H., Sell C. 2000. Insulin-like growth factor 1 -mediated degradation of insulin receptor substrate-1 is inhibited by epidermal growth factor in prostate epitelial cells. J. Biol. Chem. 275: 22 558−22 562.
Заполнить форму текущей работой