Посттрансляционная регуляция цитохромов р450 подсемейства 2в
Диссертация
Антиретровирусный препарат EFV является ненуклеозидным ингибитором обратной транскриптазы (NNRTI) и используется при комплексной терапии ВИЧ. Фармакокинетический анализ показал, что EFV обладает относительно узким терапевтическим диапазоном и значительной межиндивидуальной вариабельностью концентраций в плазме крови. С использованием микросом печени человека и рекомбинантных цитохромов Р450, Ward… Читать ещё >
Содержание
- СПИСОК СОКРАЩЕНИЙ ОБЗОР ЛИТЕРАТУРЫ Цитохромы Р450, общая характеристика
- СУР1А
- СУР1А
- СУР2В
- СУР2В
- Подсемейство СУР2С
- СУР2Б
- СУР2Е
- Подсемейство СУРЗА Протеомика, основные методы протеомных исследований
- Методы разделения белков, применяемые в протеомных исследованиях. 38 Электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН-ПААГ)
- Особенности разделения мембранных белков
- Безгелевые методы протеомного анализа
- Методы протеомного анализа цитохромов Р
- Методы предварительного разделения белков суперсемейства Р450 в протеомике
- Масс-спектрометрический анализ цитохромов Р450 56 Идентификация цитохромов Р450 в биологических объектах методами массспектрометрии
- Методы количественного масс-спектрометрического анализа. 58 Относительное масс-спектрометрическое количественное определение цитохромов Р450 без использования изотопной метк
- Использование методов с введением изотопной метки для массспектрометрического анализа цитохромов Р
- Фолдинг и сборка белков
- Основная роль молекулярных шаперонов
- Основы и нарушения белкового фолдинга
- Классификация шаперонов
- Система ШР
- Шаперонины
- Система ШР
- Взаимосвязь трансляции и фолдинга
- Поддержание протеома и сеть протеостаза
- Протеостаз при старении и заболеваниях
- Ко-трансляционная вставка гема в апофермент Р
- Встраивание гема в молекулу апофермента Р
- Факторы, определяющие аффинность взаимодействия гема с белком
- Роль гема в фолдинге гемопротеинов
- Ориентация гема в белке
- Молекулярный механизм встраивая гема в Р
- Окислительная инактивация Р
- Окислительная инактивация цитохрома Р450 в процессе катализа и при автоокислении
- Исследование окислительной модификации гема и апофермента цитохрома
- Р450 в монооксигеназной реконструированной системе
- Внутриклеточная окислительная модификация других маромолекул и их деградация
- Системы деградации белков
- Убиквитин-зависимая 268 протеасомная система
- Система деградации белков эндоплазматического ретикулума 109 Цитохромы Р450 как модель для изучения протеолитической деградации интегральных белков ЭР
- Деградация белков Р
- Деградация отдельных изоформ Р
- ERAD нативных CYP 3А4, 2С11 И 2В1 в CEREVISIAE
Список литературы
- Nelson, D.R., The cytochrome p450 homepage. Hum. Genomics 2009, 4, 59−65.
- Archakov, A.I., Lisitsa, A. V, Petushkova, N.A., Karuzina, I.I., Cytochromes P450, drug disease and personified medicine. Part 2. Therapeutic drug monitoring as a method of monooxygenase activity assessment], Klin. Med. (Mosk). 2008, 86, 4−6.
- Hesse, L.M., He, P., Krishnaswamy, S., Hao, Q., et al., Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 2004, 14, 225−38.
- Wang, M.Z., Wu, J.Q., Dennison, J.B., Bridges, A.S., et al., A gel-free MS-based quantitative proteomic approach accurately measures cytochrome P450 protein concentrations in human liver microsomes. Proteomics 2008, 8, 4186−96.
- Aguiar, M., Masse, R., Gibbs, B.F., Regulation of cytochrome P450 by posttranslational modification. Drug Me tab. Rev. 2005, 37, 379−404.
- Zanger, U.M., Schwab, M., Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103−41.
- OMURA, Т., SATO, R., A new cytochrome in liver microsomes. J. Biol. Chem. 1962, 237, 1375−6.
- Nelson, D.R., Cytochrome P450 nomenclature, 2004. Methods Mol. Biol. 2006, 320, 1−10.
- Nebert, D.W., Russell, D.W., Clinical importance of the cytochromes P450. Lancet 2002, 360, 1155−62.
- Guengerich, F.P., Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70−83.
- Klein, K., Winter, S., Turpeinen, M., Schwab, M., Zanger, U.M., Pathway-Targeted Pharmacogenomics of CYP1A2 in Human Liver. Front. Pharmacol. 2010, 1, 129.
- Nebert, D.W., Petersen, D.D., Puga, A., Human AH locus polymorphism and cancer: inducibility of CYP1A1 and other genes by combustion products and dioxin. Pharmacogenetics 1991, 1, 68−78.
- Anttila, S., Hakkola, J., Tuominen, P., Elovaara, E., et al., Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res. 2003, 63, 8623−8.
- Yoshinari, K., Ueda, R., Kusano, K., Yoshimura, T., et al., Omeprazole transactivates human CYP1A1 and CYP1A2 expression through the common regulatory region containing multiple xenobiotic-responsive elements. Biochem. Pharmacol. 2008, 76, 139−45.
- Jiang, Z., Dragin, N., Jorge-Nebert, L.F., Martin, M. V, et al., Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenet. Genomics 2006, 16, 359—67.
- Browning, S.L., Tarekegn, A., Bekele, E., Bradman, N., Thomas, M.G., CYP1A2 is more variable than previously thought: a genomic biography of the gene behind the human drug-metabolizing enzyme. Pharmacogenet. Genomics 2010, 20, 64 764.
- Shaik, A.P., Jamil, K., Das, P., CYP1A1 polymorphisms and risk of prostate cancer: a meta-analysis. Urol. J. 2009, 6, 78−86.
- Dobrinas, M., Cornuz, J., Oneda, B., Kohler Serra, M., et al., Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin. Pharmacol. Ther. 2011, 90, 117−25.
- Zhou, S.-F., Wang, B., Yang, L.-P., Liu, J.-P., Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab. Rev. 2010, 42, 268−354.
- Hiemke, C., Hartter, S., Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol. Ther. 2000, 85, 11−28.
- Kinzig-Schippers, M., Fuhr, U., Zaigler, M., Dammeyer, J., et al., Interaction of Pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin. Pharmacol. Ther. 1999,65,262−74.
- Stresser, D.M., Kupfer, D., Monospecific antipeptide antibody to cytochrome P-450 2B6. Drug Metab. Dispos. 1999, 27, 517−25.
- Ekins, S., Vandenbranden, M., Ring, B.J., Gillespie, J.S., et al., Further characterization of the expression in liver and catalytic activity of CYP2B6. J. Pharmacol. Exp. Ther. 1998,286, 1253−9.
- Faucette, S.R., Hawke, R.L., Lecluyse, E.L., Shord, S.S., et al., Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab. Dispos. 2000, 28, 1222−30.
- Pascussi, J.M., Gerbal-Chaloin, S., Fabre, J.M., Maurel, P., Vilarem, M.J., Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation. Mol. Pharmacol. 2000, 58, 1441−50.
- Faucette, S.R., Wang, FI., Hamilton, G.A., Jolley, S.L., et al., Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab. Dispos. 2004, 32, 348−58.
- Ekins, S., Wrighton, S.A., The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 1999, 31, 719−54.
- Zanger, U.M., Klein, K., Saussele, T., Blievernicht, J., et al., Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 2007, 8, 743—59.
- Gervot, L., Rochat, B., Gautier, J.C., Bohnenstengel, F., et al., Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 1999, 9, 295 306.
- Kocarek, T.A., Dahn, M.S., Cai, H., Strom, S.C., Mercer-Haines, N.A., Regulation of CYP2B6 and CYP3A expression by hydroxymethylglutaryl coenzyme A inhibitors in primary cultured human hepatocytes. Drug Metab. Dispos. 2002, 30, 1400−5.
- Mizukami, Y., Sogawa, K., Suwa, Y., Muramatsu, M., Fujii-Kuriyama, Y., Gene structure of a phenobarbital-inducible cytochrome P-450 in rat liver. Proc. Natl. Acad. Sci. U. S. A. 1983, 80, 3958−62.
- Phillips, I.R., Shephard, E.A., Povey, S., Davis, M.B., et al., A cytochrome P-450 gene family mapped to human chromosome 19. Ann. Hum. Genet. 1985, 49, 26 774.
- Santisteban, I., Povey, S., Shephard, E.A., Phillips, I.R., The major phenobarbital-inducible cytochrome P-450 gene subfamily (P450IIB) mapped to the long arm of human chromosome 19 .Ann. Hum. Genet. 1988, 52, 129−35.
- Murray, G.I., Taylor, A., Barnes, T.S., Weaver, R., et al., The distribution of different forms of cytochrome P-450 in human liver. Biochem. Soc. Trans. 1990, 18, 1202.
- Anundi, I., Lahteenmaki, T., Rundgren, M., Moldeus, P., Lindros, K.O., Zonation of acetaminophen metabolism and cytochrome P450 2El-mediated toxicity studied in isolated periportal and perivenous hepatocytes. Biochem. Pharmacol. 1993, 45, 1251−9.
- Lieber, C.S., Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968−1998)—a review. Alcohol. Clin. Exp. Res. 1999, 23, 991−1007.
- Ding, X., Kaminsky, L.S., Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 149−73.
- Miksys, S., Lerman, C., Shields, P.G., Mash, D.C., Tyndale, R.F., Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology 2003, 45, 122−32.
- Aleksa, K., Matsell, D., Krausz, K., Gelboin, H., et al., Cytochrome P450 3A and 2B6 in the developing kidney: implications for ifosfamide nephrotoxicity. Pediatr. Nephrol. 2005, 20, 872−85.
- Yamada, H., Ishii, Y., Yamamoto, M., Oguri, K., Induction of the hepatic cytochrome P450 2B subfamily by xenobiotics: research history, evolutionary aspect, relation to tumorigenesis, and mechanism. Curr. Drug Metab. 2006, 7, 397−409.
- Kobayashi, K" Kogo, M., Tani, M., Shimada, N" et al., Role of CYP2C19 in stereoselective hydroxylation of mephobarbital by human liver microsomes. Drug Metab. Dispos. 2001, 29, 36-^0.
- Hu, Y., Kupfer, D., Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s): major differences in selective enantiomer formation by various P450 isoforms. Drug Metab. Dispos. 2002, 30, 1329−36.
- Ramirez, J., Innocenti, P., Schuetz, E.G., Flockhart, D.A., et al., CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes. Drug Metab. Dispos. 2004, 32, 930−6.
- Loboz, K.K., Gross, A.S., Williams, K.M., Liauw, W.S., et al., Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin. Pharmacol. Ther. 2006, 80, 75−84.
- Kharasch, E.D., Mitchell, D., Coles, R., Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity. J. Clin. Pharmacol. 2008, 48, 464−74.
- Eap, C.B., Crettol, S., Rougier, J.-S., Schlapfer, J., et al., Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers. Clin. Pharmacol. Ther. 2007, 81, 719−28.
- Anzenbacher, P., Anzenbacherova, E., Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001, 58, 737−47.
- Xie, W., Evans, R.M., Orphan nuclear receptors: the exotics of xenobiotics. J. Biol. Chem. 2001, 276, 37 739−42.
- Walsky, R.L., Astuccio, A. V, Obach, R.S., Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J. Clin. Pharmacol. 2006, 46, 1426−38.
- Joo, I-L, Choi, K., Rose, R.L., Hodgson, E., Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos. J. Biochem. Mol. Toxicol. 2007, 21, 76−80.
- Rotger, M., Tegude, H., Colombo, S., Cavassini, M., et al., Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin. Pharmacol. Ther. 2007, 81, 557−66.
- Desta, Z., Saussele, T., Ward, B., Blievernicht, J., et al., Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro. Pharmacogenomics 2007, 8, 547−58.
- Lang, T., Klein, K., Fischer, J., Ntissler, A.K., et al., Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 2001, 11, 399−415.
- Hesse, L.M., Venkatakrishnan, K., Court, M.PI., von Moltke, L.L., et al., CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab. Dispos. 2000, 28, 1176−83.
- Lang, T., Klein, K., Richter, T., Zibat, A., et al., Multiple novel nonsynonymous CYP2B6 gene polymorphisms in Caucasians: demonstration of phenotypic null alleles. J. Pharmacol. Exp. Ther. 2004, 311, 34−43.
- Zukunft, J., Lang, T., Richter, T., Hirsch-Ernst, K.I., et al., A natural CYP2B6 TATA box polymorphism (-82T~> C) leading to enhanced transcription and relocation of the transcriptional start site. Mol. Pharmacol. 2005, 67, 1772−82.
- He, M.-L., Lin, C., Tong, K., Xu, B., et al., Absence of CYP2B6 promoter -82T>C mutation in Chinese as an additional factor for slow metabolism of drugs commonly used in infections. Eur. J. Clin. Pharmacol. 2006, 62, 585—6.
- Marzolini, C., Telenti, A., Decosterd, L.A., Greub, G., et al., Efavirenz plasma levels can predict treatment failure and central nervous system side effects in ITIV-1-infected patients. AIDS 2001, 15, 71−5.
- Haas, D.W., Human genetic variability and HIV treatment response. Curr. HIV/AIDS Rep. 2006, 3, 53−8.
- Gatanaga, H., Hayashida, T., Tsuchiya, K., Yoshino, M., et al., Successful efavirenz dose reduction in HIV type 1-infected individuals with cytochrome P450 2B6 *6 and *26. Clin. Infect. Dis. 2007, 45, 1230−7.
- Jones, R.B., Matthes, S., Dufton, C., Bearman, S.I., et al., Pharmacokinetic/pharmacodynamic interactions of intensive cyclophosphamide, cisplatin, and BCNU in patients with breast cancer. Breast Cancer Res. Treat. 1993, 26 Suppl, SI 1−7.
- Roy, P., Tretyakov, O., Wright, J., Waxman, D.J., Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of Renantiomer. Drug Metab. Dispos. 1999, 27, 1309−18.
- Huang, Z., Roy, P., Waxman, D.J., Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. 2000, 59, 961−72.
- Jounaidi, Y., Waxman, D.J., Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy. Cancer Res. 2004, 64, 292−303.
- Faucette, S.R., Sueyoshi, T., Smith, C.M., Negishi, M., et al., Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J. Pharmacol. Exp. Ther. 2006, 317, 1200−9.
- De Jonge, M.E., Huitema, A.D.R., Rodenhuis, S., Beijnen, J.H., Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 2005, 44, 1135−64.
- Nakajima, M., Komagata, S., Fujiki, Y., Kanada, Y., et al., Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet. Genomics 2007, 17, 43 1−45.
- Naraharisetti, S.B., Lin, Y.S., Rieder, M.J., Marciante, K.D., et al., Human liver expression of CYP2C8: gender, age, and genotype effects. Drug Metab. Dispos. 2010,38,889−93.
- Rodrigues, A.D., Rushmore, T.H., Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr. Drug Metab. 2002, 3, 289−309.
- Lee, C.R., Goldstein, J.A., Pieper, J.A., Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002, 12, 251−63.
- Lai, X.-S., Yang, L.-P., Li, X.-T., Liu, J.-P., et al., Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms. Curr. Drug Metab. 2009, 10, 1009−47.
- Gerbal-Chaloin, S., Daujat, M., Pascussi, J.-M., Pichard-Garcia, L., et al., Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J. Biol. Chem. 2002, 277, 209−17.
- Kerb, R., Fux, R., Morike, K., Kremsner, P.G., et al., Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect. Dis. 2009, 9, 760−74.
- Dai, D., Zeldin, D.C., Blaisdell, J.A., Chanas, B., et al., Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001, 11, 597−607.
- Parikh, S., Ouedraogo, J.-B., Goldstein, J.A., Rosenthal, P.J., Kroetz, D.L., Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin. Pharmacol. Ther. 2007, 82, 197−203.
- Muschler, E., Lai, J., .letter, A., Rattay, A., et al., The role of human CYP2C8 and CYP2C9 variants in pioglitazone metabolism in vitro. Basic Clin. Pharmacol. Toxicol. 2009, 105, 374−9.
- Gao, Y., Liu, D., Wang, H., Zhu, J., Chen, C., Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug-drug interactions. Xenobiotica. 2010, 40, 467−75.
- Goldstein, J. A., Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 2001, 52, 349−55.
- Rettie, A.E., Jones, J.P., Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 477−94.
- Scott, S.A., Jaremko, M., Lubitz, S.A., Kornreich, R., et al., CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics 2009, 10, 1243—55.
- Takanashi, K., Tainaka, H., Kobayashi, K., Yasumori, T., et al., CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 2000, 10, 95−104.
- Doecke, C.J., Veronese, M.E., Pond, S.M., Miners, J.O., et al., Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes. Br. J. Clin. Pharmacol. 1991, 31, 125−30.
- Ong, C.E., Miners, J.O., Birkett, D.J., Bhasker, C.R., Baculovirus-mediated expression of cytochrome P4502C8 and human NADPH-cytochrome P450 reductase: optimization of protein expression. Xenobiotica. 1998, 28, 137−52.
- Bourrie, M., Meunier, V., Berger, Y., Fabre, G., Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther. 1996, 277, 321−32.
- Komatsu, K., Ito, K., Nakajima, Y., Kanamitsu, S. i, et al., Prediction of in vivo drug-drug interactions between tolbutamide and various sulfonamides in humans based on in vitro experiments. Drug Me tab. Dispos. 2000, 28, 475−81.
- Boulenc, X., Djebli, N., Shi, J., Perrin, L., et al., Effects of omeprazole and genetic polymorphism of CYP2C19 on the clopidogrel active metabolite. Drug Metab. Dispos. 2012, 40, 187−97.
- Rosemary, J., Adithan, C., The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance. Curr. Clin. Pharmacol. 2007, 2, 93−109.
- Stingl, J.C., Brockmoller, J., Viviani, R., Genetic variability of drug-metabolizing enzymes: the dual impact on psychiatric therapy and regulation of brain function. Mol. Psychiatry 2013, 18, 273−87.
- Brauch, H., Miirdter, T.E., Eichelbaum, M., Schwab, M., Pharmacogenomics of tamoxifen therapy. Clin. Chem. 2009, 55, 1770−82.
- Stevens, J.C., Marsh, S.A., Zaya, M.J., Regina, K.J., et al., Developmental changes in human liver CYP2D6 expression. Drug Metab. Dispos. 2008, 36, 1587−93.
- Khojasteh, S.C., Prabhu, S., Kenny, J.R., Halladay, J.S., Lu, A.Y.H., Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a reevaluation ofP450 isoform selectivity. Eur. J. Drug Metab. Pharmacokinet. 201 1, 36, 1−16.
- Glaeser, H., Drescher, S., Eichelbaum, M., Fromm, M.F., Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes. Br. J. Clin. Pharmacol. 2005, 59, 199−206.
- Aubert, J., Begriche, K., Knockaert, L., Robin, M.A., Fromenty, B., Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role. Clin. Res. Hepatol. Gastroenterol. 2011, 35, 630−7.
- Caro, A.A., Cederbaum, A.I., Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 27−42.
- Lu, Y., Cederbaum, A.I., CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 2008, 44, 723−38.
- Marchand, L.L., Wilkinson, G.R., Wilkens, L.R., Genetic and dietary predictors of CYP2E1 activity: a phenotyping study in Hawaii Japanese using chlorzoxazone. Cancer Epidemiol. Biomarkers Prev. 1999, 8, 495−500.
- Newton, D.J., Wang, R.W., Lu, A.Y., Cytochrome P450 inhibitors. Evaluation of specificities in the in vitrometabolism of therapeutic agents by human liver microsomes. Drug Metab. Dispos. 1995, 23, 154−8.
- Zanger, U.M., Turpeinen, M., Klein, K., Schwab, M., Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem. 2008, 392, 1093−108.
- Daly, A.K., Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet. 2006, 45, 13−31.
- Goodwin, B., Hodgson, E., Liddle, C., The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 1999, 56, 1329−39.
- Lamba, J., Lamba, V., Strom, S., Venkataramanan, R., Schuetz, E., Novel single nucleotide polymorphisms in the promoter and intron 1 of human pregnane X receptor/NRH2 and their association with CYP3A4 expression. Drug Metab. Dispos. 2008, 36, 169−81.
- Ozdemir, V., Kalow, W., Tang, B.K., Paterson, A.D., et al., Evaluation of the genetic component of variability in CYP3 A4 activity: a repeated drug administration method. Pharmacogenetics 2000, 10, 373−88.
- VandenBranden, M., Wrighton, S.A., Ekins, S., Gillespie, J.S., et al., Alterations of the catalytic activities of drug-metabolizing enzymes in cultures of human liver slices. Drug Metab. Dispos. 1998,26, 1063−8.
- Araki, N., Tsuruoka, S., Hasegawa, G., Yanagihara, PI., et al., Inhibition of CYP3A4 by 6', 7'-dihydroxybergamottin in human CYP3A4 over-expressed hepG2 cells./. Pharm. Pharmacol. 2012, 64, 1715−21.
- Williams, J.A., Ring, B.J., Cantrell, V.E., Jones, D.R., et al., Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 2002, 30, 883−91.
- Asghar, A., Gorski, J.C., Haehner-Daniels, B., Hall, S.D., Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Drug Metab. Dispos. 2002, 30, 20−6.
- Leeder, J.S., Gaedigk, R., Marcucci, K.A., Gaedigk, A., et al., Variability of CYP3A7 expression in human fetal liver. J. Pharmacol. Exp. Ther. 2005, 314, 626−35.
- Sim, S.C., Edwards, R.J., Boobis, A.R., Ingelman-Sundberg, M., CYP3A7 protein expression is high in a fraction of adult human livers and partially associated with the CYP3A7* 1C allele. Pharmacogenet. Genomics 2005, 15, 625−31.
- O’Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007−21.
- Cash, P., Protein mutations revealed by two-dimensional electrophoresis. J. Chromatogr. A 1995, 698, 203−24.
- Klose, J., Kobalz, U., Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 1995, 16, 1034−59.
- Ames, G.F., Nilcaido, K., Two-dimensional gel electrophoresis of membrane proteins. Biochemistry 1976, 15, 616−23.
- Perdew, G.H., Schaup, H.W., Selivonchick, D.P., The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Anal. Biochem. 1983, 135, 453−5.
- Gyenes, T., Gyenes, E., Effect of «stacking» on the resolving power of ultrathin-layer two-dimensional gel electrophoresis. Anal. Biochem. 1987, 165, 155−60.
- Rabilloud, T., Gianazza, E., Catto, N., Righetti, P.G., Amidosulfobetaines, a family of detergents with improved solubilization properties: application for isoelectric focusing under denaturing conditions. Anal. Biochem. 1990, 185, 94−102.
- Felsted, R.L., Gupta, S.K., Glover, C.J., Fischkoff, S.A., Gallagher, R.E., Cell surface membrane protein changes during the differentiation of cultured human promyelocytic leukemia HL-60 cells. Cancer Res. 1983, 43, 2754−61.
- Ltiddens, IT, Flavsteen, B., Characterization of the porcine ACTH receptor with the aid of a monoclonal antibody. Biol. Chem. Hoppe. Seyler. 1986, 367, 539−47.
- Sweetnam, P., Nestler, E., Gallombardo, P., Brown, S., et al., Comparison of the molecular structure of GABA/benzodiazepine receptors purified from rat and human cerebellum. Brain Res. 1987, 388, 223−33.
- Alla, S.A., Buschko, J., Quitterer, U., Maidhof, A., et al., Structural features of the human bradykinin B2 receptor probed by agonists, antagonists, and anti-idiotypic antibodies. J. Biol. Chem. 1993, 268, 17 277−85.
- Englund, A.K., Lundahl, P., The isoelectric point of the human red cell glucose transporter. Biochim. Biophys. Acta 1991, 1065, 185−94.
- Rubin, R.W., Minkowski, C., Over two hundred polypeptides resolved from the human erythrocyte membrane. Biochim. Biophys. Acta 1978, 509, 100−10.
- Quaranta, S., Giuffrida, M.G., Cavaletto, M., Giunta, C., et al., Human proteome enhancement: high-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis 2001, 22, 1810−8.
- Chevallet, M., Santoni, V., Poinas, A., Rouquie, D., et al., New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 1998, 19, 1901−9.
- Rabilloud, T., Adessi, C., Giraudel, A., Lunardi, J., Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pIT gradients. Electrophoresis n.d., 18, 307−16.
- Fazekas de St Groth, S., Webster, R.G., Datyner, A., Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochim. Biophys. Acta 1963, 71, 377−91.
- The Proteomics Protocols Handbook, Springer, 2005.
- Patton, W.F., Detection technologies in proteome analysis. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2002, 771, 3−31.
- Archakov, A., Ivanov, Y., Lisitsa, A., Zgoda, V., Biospecific irreversible fishing coupled with atomic force microscopy for detection of extremely low-abundant proteins. Proteomics 2009, 9, 1326−43.
- Diezel, W., Kopperschlager, G., Hofmann, E., An improved procedure for protein staining in polyacrylamide gels with a new type of Coomassie Brilliant Blue. Anal. Biochem. 1972,48, 617−20.
- Neuhoff, V., Stamm, R., Eibl, H., Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 1985, 6, 427−448.
- Anderson, N.L., Esquer-Blasco, R., Hofmann, J.P., Anderson, N.G., A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies. Electrophoresis 1991, 12, 907−30.
- Fountoulakis, M., Soumaka, E., Rapti, K., Mavroidis, M., et al., Alterations in the heart mitochondrial proteome in a desmin null heart failure model. J. Mol. Cell. Cardiol. 2005, 38, 461−74.
- Smejkal, G.B., Robinson, M.H., Lazarev, A., Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels. Electrophoresis 2004, 25, 2511−9.
- Switzer, R.C., Merril, C.R., Shifrin, S., A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 1979, 98, 231−7.
- Oakley, B.R., Kirsch, D.R., Morris, N.R., A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 1980, 105, 361−3.
- Merril, C.R., Switzer, R.C., Van Keuren, M.L., Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 4335−9.
- Hochstrasser, D.F., Harrington, M.G., Hochstrasser, A.C., Miller, M.J., Merril, C.R., Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 1988, 173,424−35.
- Heukeshoven, J., Dernick, R., Simplified method for silver staining of proteins in polyacrylamide gels and the mechanism of silver staining. Electrophoresis 1985, 6, 103−112.
- Blum, H., Beier, H., Gross, H.J., Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987, 8, 93−99.
- Rabilloud, T., Silver staining of2-D electrophoresis gels. Methods Mol. Biol. 1999, 112, 297−305.
- Westermeier, R., Marouga, R., Protein detection methods in proteomics research. Biosci. Rep. n.d., 25, 19−32.
- Rabilloud, T., A comparison between low background silver diammine and silver nitrate protein stains. Electrophoresis 1992, 13, 429−39.
- Chevalier, F., Rofidal, V., Vanova, P., Bergoin, A., Rossignol, M., Proteomic capacity of recent fluorescent dyes for protein staining. Phytochemistry 2004, 65, 1499−506.
- Schlags, W., Walther, M., Masree, M., Kratzel, M., et al., Towards validating a method for two-dimensional electrophoresis/silver staining. Electrophoresis 2005, 26, 2461−9.
- Giometti, C.S., Gemmell, M.A., Tollaksen, S.L., Taylor, J., Quantitation of human leukocyte proteins after silver staining: a study with two-dimensional electrophoresis. Electrophoresis n.d., 12, 536−43.
- Sinha, P., Poland, J., Schnolzer, M., Rabilloud, T., A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 2001, 1, 835−40.
- Steinberg, T.H., Jones, L.J., Haugland, R.P., Singer, V.L., SYPRO orange and SYPRO red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal. Biochem. 1996, 239, 223−37.
- Steinberg, T.H., Haugland, R.P., Singer, V.L., Applications of SYPRO orange and SYPRO red protein gel stains. Anal. Biochem. 1996, 239, 238−45.
- Walker, J.M., editor., The Proteomics Protocols Handbook, Humana Press, Totowa, NJ 2005.
- Berggren, K., Steinberg, T.H., Lauber, W.M., Carroll, J.A., et al., A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal. Biochem. 1999, 276, 129−43.
- Barbara Sitek, B.S., Proteomics in Drug Research, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG 2006.
- Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., et al., Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1, 377−96.
- Shaw, J., Rowlinson, R., Nickson, J., Stone, T., et al., Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 2003, 3, 1181−95.
- Gharbi, S., Gaffney, P., Yang, A., Zvelebil, M.J., et al., Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol. Cell. Proteomics 2002, 1, 91−8.
- Gonzalez-Begne, M., Lu, B., Han. X., Hagen, F.K., et al., Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 2009, 8, 1304−14.
- Washburn, M.P., Wolters, D., Yates, J.R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242−7.
- Wang, W., Guo, T., Song, T., Lee, C.S., Balgley, B.M., Comprehensive yeast proteome analysis using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-MS/MS. Proteomics 2007, 7, 1 178−87.
- Blonder, J., Goshe, M.B., Moore, R.J., Pasa-Tolic, L., et al., Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J. Proteome Res. n.d., 1, 351−60.
- Chen, E.I., Cociorva, D., Norris, J.L., Yates, J.R., Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J. Proteome Res. 2007, 6, 2529−38.
- Strader, M.B., Tabb, D.L., Hervey, W.J., Pan, C" Hurst, G.B., Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. Anal. Chem. 2006, 78, 125−34.
- Russell, W.K., Park, Z.Y., Russell, D.H., Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. Anal. Chem. 2001, 73, 2682−5.
- Fischer, F., Wolters, D., Rogner, M., Poetsch, A., Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol. Cell. Proteomics 2006, 5, 444−53.
- Hervey, W.J., Strader, M.B., Hurst, G.B., Comparison of digestion protocols for microgram quantities of enriched protein samples. J. Proteome Res. 2007, 6, 305 461.
- Zhang, N., Chen, R., Young, N., Wishart, D., et al., Comparison of SDS- and methanol-assisted protein solubilization and digestion methods for Escherichia coli membrane proteome analysis by 2-D LC-MS/MS. Proteomics 2007, 7, 484−93.
- Wu, C.C., MacCoss, M.J., Howell, K.E., Yates, J.R., A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol. 2003, 21, 532−8.
- Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 2001, 305, 567−80.
- Giddings, J.C., Concepts and comparisons in multidimensional separation. J. High Resolut. Chromatogr. 1987, 10,319−323.
- Bushey, M.M., Jorgenson, J.W., Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Anal. Chem. 1990, 62, 161−7.
- Larmann, J.P., Lemmo, A. V, Moore, A.W., Jorgenson, J.W., Two-dimensional separations of peptides and proteins by comprehensive liquid chromatography-capillary electrophoresis. Electrophoresis n.d., 14, 439−4-7.
- Galeva, N., Altermann, M., Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics 2002, 2, 713−22.
- Petushkova, N.A., Kanaeva, I.P., Lisitsa, A. V, Sheremetyeva, G.F., et al., Characterization of human liver cytochromes P450 by combining the biochemical and proteomic approaches. Toxicol. In Vitro 2006, 20, 966−74.
- Zgoda, V.G., Moshkovskii, S.A., Ponomarenko, E.A., Andreewski, T. V, et al., Proteomics of mouse liver microsomes: performance of different protein separation workflows for LC-MS/MS. Proteomics 2009, 9, 4102−5.
- Petushkova, N.A., Lisitsa, A. V, Producing a one-dimensional proteomic map for human liver cytochromes p450. Methods Mol. Biol. 2012, 909, 63−82.
- Walther, T.C., Mann, M., Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 2010, 190, 491−500.
- Langenfeld, E., Meyer, H.E., Marcus, K., Quantitative analysis of highly homologous proteins: the challenge of assaying the «CYP-ome» by mass spectrometry. Anal. Bioanal. Chem. 2008, 392, 1123−34.
- Galeva, N., Yakovlev, D., Koen, Y., Duzhak, T., Alterman, M., Direct identification of cytochrome P450 isozymes by matrix-assisted laserdesorption/ionization time of flight-based proteomic approach. Drug Metab. Dispos. 2003, 31, 351−5.
- Roy, L., Laboissiere, S., Abdou, E., Thibault, G., et al., Proteomic analysis of the transitional endoplasmic reticulum in hepatocellular carcinoma: an organelle perspective on cancer. Biochim. Biophys. Acta 2010, 1804, 1869−81.
- Dail, M.B., Shack, L.A., Chambers, J.E., Burgess, S.C., Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol. Sci. 2008, 106, 556−69.
- Everley, P.A., Krijgsveld, J., Zetter, B.R., Gygi, S.P., Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol. Cell. Proteomics 2004, 3, 729−35.
- Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., Gygi, S.P., Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6940−5.
- Kopylov, A.T., Zgoda, V.G., Methods of quantitative proteomics]. Biomeditsinskaia khimiia n.d., 53, 613−43.
- Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 2007, 389, 1017−31.
- Jia, N., Liu, X., Wen, J., Qian, L., et al., A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes. Toxicology 2007, 237, 1−1 1.
- Ji, C., Guo, N., Li, L., Differential dimethyl labeling of N-termini of peptides after guanidination for proteome analysis. J. Proteome Res. n.d., 4, 2099−108.
- FIsu, J.-L., Huang, S.-Y., Chow, N.-H., Chen, S.-FI., Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 2003, 75, 6843−52.
- Jenkins, R.E., Kitteringham, N.R., Hunter, C.L., Webb, S., et al., Relative and absolute quantitative expression profiling of cytochromes P450 using isotope-coded affinity tags. Proteomics 2006, 6, 1934−47.
- Schmidt, A., Kellermann, J., Lottspeich, F., A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 2005, 5, 4−15.
- Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., et al., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 2004, 3, 1154−69.
- Griffin, T.J., Xie, H., Bandhakavi, S., Popko, J., et al., iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J. Proteome Res. 2007, 6, 4200−9.
- Wiese, S., Reidcgeld, K.A., Meyer, H.E., Warscheid, B., Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340−50.
- Rivers, J., Simpson, D.M., Robertson, D.H.L., Gaskell, S.J., Beynon, R.J., Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol. Cell. Proteomics 2007, 6, 1416−27.
- Yu, A.-M., Qu, J., Felmlee, M.A., Cao, J., Jiang, X.-L., Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis. DrugMetab. Dispos. 2009, 37, 170−7.
- Fenselau, C., Yao, X., Proteolytic labeling with 180 for comparative proteomics studies: preparation of 180-labeled peptides and the 180/160 peptide mixture. Methods Mol. Biol. 2007, 359, 135−42.
- Ramos-Fernandez, A., Lopez-Ferrer, D., Vazquez, J., Improved method for differential expression proteomics using trypsin-catalyzed 180 labeling with a correction for labeling efficiency. Mol. Cell. Proteomics 2007, 6, 1274−86.
- Lopez-Ferrer, D., Ramos-Fernandez, A., Martinez-Bartolome, S., Garcia-Ruiz, P., Vazquez, J., Quantitative proteomics using 160/180 labeling and linear ion trap mass spectrometry. Proteomics 2006, 6 Suppl 1, S4−11.
- Alterman, M.A., Kornilayev, B., Duzhak, T., Yakovlev, D., Quantitative analysis of cytochrome p450 isozymes by means of unique isozyme-specific tryptic peptides: a proteomic approach. Drug Metab. Dispos. 2005, 33, 1399—407.
- Seibert, C., Davidson, B.R., Fuller, B.J., Patterson, L.H., et al., Multiple-approaches to the identification and quantification of cytochromes P450 in human liver tissue by mass spectrometry. J. Proteome Res. 2009, 8, 1672−81.
- Huang, H.-J., Tsai, M.-L., Chen, Y.-W., Chen, S.-H., Quantitative shot-gun proteomics and MS-based activity assay for revealing gender differences in enzyme contents for rat liver microsome. J. Proteomics 2011, 74, 2734−44.
- Wang, D., Zhang, M., Rapid quantitation of testosterone hydroxyl metabolites by ultra-performance liquid chromatography and mass spectrometry. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2007, 855, 290-^1.
- Lane, C.S., Wang, Y., Betts, R., Griffiths, W.J., Patterson, L.H., Comparative cytochrome P450 proteomics in the livers of immunodeficient mice using 180 stable isotope labeling. Mol. Cell. Proteomics 2007, 6, 953−62.
- Wang, Y., Al-Gazzar, A., Seibert, C., Sharif, A., et al., Proteomic analysis of cytochromes P450: a mass spectrometry approach. Biochem. Soc. Trans. 2006, 34, 1246−51.
- Langenfeld, E., Zanger, U.M., Jung, K., Meyer, H.E., Marcus, K., Mass spectrometry-based absolute quantification of microsomal cytochrome P450 2D6 in human liver. Proteomics 2009, 9, 2313−23.
- Bartlett, A.I., Radford, S.E., An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat. Struct. Mol. Biol. 2009, 16, 582−8.
- Dunker, A.K., Sihnan, I., Uversky, V.N., Sussman, J.L., Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol. 2008, 18, 756—64.
- Hutt, D.M., Powers, E.T., Balch, W.E., The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett. 2009, 583, 263916.
- Morimoto, R.I., Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008, 22, 1427−38.
- Hartl, F.U., Molecular chaperones in cellular protein folding. Nature 1996, 381, 571−9.
- Herbst, R., Schafer, U., Seckler, R., Equilibrium intermediates in the reversible unfolding of firefly (Photinus pyralis) luciferase. J. Biol. Chem. 1997, 272, 7 099 105.
- Ellis, R.J., Minton, A.P., Protein aggregation in crowded environments. Biol. Chem. 2006, 387, 485−97.
- Tokuriki, N., Tawfik, D.S., Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 2009, 459, 668−73.
- Skach, W.R., Cellular mechanisms of membrane protein folding. Nat. Struct. Mol. Biol. 2009, 16, 606−12.
- Kerner, M.J., Naylor, D.J., Ishihama, Y., Maier, T., et al., Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 2005, 122, 20 920.
- Eichner, T., Kalverda, A.P., Thompson, G.S., Homans, S.W., Radford, S.E., Conformational conversion during amyloid formation at atomic resolution. Mol. Cell 2011, 41, 161−72.
- Chiti, F., Dobson, C.M., Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333−66.
- Bolognesi, B., Kumita, J.R., Barros, T.P., Esbjorner, E.K., et al., ANS binding reveals common features of cytotoxic amyloid species. ACS Chem. Biol. 2010, 5, 735−40.
- Hartl, F.U., Hayer-Hartl, M., Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 2009, 16, 574−81.
- Langer, T., Lu, C., Echols, H., Flanagan, J., et al., Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 1992, 356, 683−9.
- Auluck, P.K., Chan, H.Y.E., Trojanowski, J.Q., Lee, V.M.Y., Bonini, N.M., Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 2002, 295, 865−8.
- Mayer, M.P., Gymnastics of molecular chaperones. Mol. Cell 2010, 39, 321−31.
- Arndt, V., Dick, N., Tawo, R., Dreiseidler, M., et al., Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 2010, 20, 143−8.
- Riidiger, S., Buchberger, A., Bukau, B., Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol. 1997, 4, 342−9.
- Rousseau, F., Serrano, L., Schymkowitz, J.W.H., Iiow evolutionary pressure against protein aggregation shaped chaperone specificity. J. Mol. Biol. 2006, 355, 1037−47.
- Kampinga, H.H., Craig, E.A., The FISP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 2010, 11, 579−92.
- Sharma, S.K., De los Rios, P., Christen, P., Lustig, A., Goloubinoff, P., The kinetic parameters and energy cost of the FIsp70 chaperone as a polypeptide unfoldase. Nat. Chem. Biol. 2010, 6, 914−20.
- Iiorwich, A.L., Fenton, W.A., Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Q. Rev. Biophys. 2009, 42, 83−116.
- Brinker, A., Pfeifer, G. Kerner, M.J., Naylor, D.J., et al., Dual function of protein confinement in chaperonin-assisted protein folding. Cell 2001, 107, 223−33.
- Douglas, N.R., Reissmann, S., Zhang, J., Chen, B., et al., Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 2011, 144, 240−52.
- Reissmann, S., Parnot, C., Booth, C.R., Chiu, W., Frydman, J., Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat. Struct. Mol. Biol. 2007, 14, 432−40.
- Tam, S., Geller, R., Spiess, C., Frydman, J., The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 2006, 8, 1155−62.
- Taipale, M., Jarosz, D.F., Lindquist, S., HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 515−28.
- Scheufler, C., Brinker, A., Bourenkov, G., Pegoraro, S., et al., Structure of TPR domain-peptide complexes: critical elements in the assembly of the PIsp70-Hsp90 multichaperone machine. Cell 2000, 101, 199−210.
- Wandinger, S.K., Richter, K., Buchner, J., The PIsp90 chaperone machinery. J. Biol. Chem. 2008, 283, 18 473−7.
- Shiau, A.K., Harris, S.F., Southworth, D.R., Agard, D.A., Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 2006, 127, 329−40.
- Neckers, L., Heat shock protein 90: the cancer chaperone. J. Biosci. 2007, 32, 51 730.
- Cabrita, L.D., Hsu, S.-T.D., Launay, H., Dobson, C.M., Christodoulou, J., Probing ribosome-nascent chain complexes produced in vivo by NMR spectroscopy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 22 23914.
- Ferbitz, L., Maier, T., Patzelt, IT, Bukau, B., et al., Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 2004, 431, 590−6.
- Kaiser, C.M., Chang, H.-C., Agashe, V.R., Lakshmipathy, S.K., et al., Real-time observation of trigger factor function on translating ribosomes. Nature 2006, 444, 455−60.
- Elcock, A.H., Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput. Biol. 2006, 2, e98.
- Netzer, W.J., ITartl, F.U., Recombination of protein domains facilitated by cotranslational folding in eukaryotes. Nature 1997, 388, 343−9.
- Agashe, V.R., Guha, S., Chang, H.-C., Genevaux, P., et al., Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 2004, 117, 199−209.
- Zhang, G., Ignatova, Z., Generic algorithm to predict the speed of translational elongation: implications for protein biogenesis. PLoS One 2009, 4, e5036.
- Vabulas, R.M., Hartl, F.U., Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 2005, 310, 1960−3.
- Vavouri, T., Semple, J.I., Garcia-Verdugo, R., Lehncr, B., Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 2009, 138, 198−208.
- Arndt, V., Rogon, C., Hohfeld, J., To be, or not to be—molecular chaperones in protein degradation. Cell. Mol. Life Sci. 2007, 64, 2525−41.
- Kaganovich, D., Kopito, R., Frydman, J., Misfolded proteins partition between two distinct quality control compartments. Nature 2008, 454, 1088−95.
- Kopito, R.R., Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000, 10, 524−30.
- Kern, A., Ackermann, B., Clement, A.M., Duerk, H., Behl, C., HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS One 2010, 5, e8568.
- Demontis. F., Perrimon, N., FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 2010, 143, 813−25.
- Olzscha, H., Schermann, S.M., Woerner, A.C., Pinkert, S., et al., Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 2011, 144, 67−78.
- Xu, J., Reumers, J., Couceiro, J.R., De Smet, F., et al., Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat. Chem. Biol. 2011, 7, 285−95.
- Gidalevitz, T., Ben-Zvi, A., Ho, K.PI., Brignull, H.R., Morimoto, R.I., Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006, 311, 1471−4.
- Behrends, C., Langer, C.A., Boteva, R., Bottcher, U.M., et al., Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers. Mol. Cell 2006, 23, 887−97.
- Lee, B.-H., Lee, M.J., Park, S., Oh, D.-C., et al., Enhancement ofproteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467, 179−84.
- Negishi, M., Fujii-Kuriyama, Y., Tashiro, Y., Imai, Y., Site of biosynthesis of cytochrome P450 in hepatocytes of phenobarbital treated rats. Biochem. Biophys. Res. Commun. 1976,71, 1153−60.
- Avadhani, N.G., Sangar, M.C., Bansal, S., Bajpai, P., Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J. 2011, 278, 4218−29.
- Monier, S., Van Luc, P., Kreibich, G., Sabatini, D.D., Adesnik, M., Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J. Cell Biol. 1988, 107,457−70.
- Lazarow, P.B., de Duve, C., The synthesis and turnover of rat liver of rat liver peroxisomes. IV. Biochemical pathway of catalase synthesis. J. Cell Biol. 1973, 59, 491−506.
- Negishi, M., Kreibich, G., Coordinated polypeptide synthesis and insertion of protoheme in cytochrome P-450 during development of endoplasmic reticulum membranes. J. Biol. Chem. 1978, 253, 4791−7.
- Sadano, H., Omura, T., Incorporation of heme to microsomal cytochrome P-450 in the absence of protein biosynthesis. J. Biochem. 1985, 98, 1321−31.
- Correia, M.A., Meyer, U.A., Apocytochrome P-450: reconstitution of functional cytochrome with hemin in vitro. Proc. Natl. Acad. Sei. U. S. A. 1975, 72, 400−4.
- Meyer, R.P., Lindberg, R.L.P., Hoffmann, F., Meyer, U.A., Cytosolic persistence of mouse brain CYP1A1 in chronic heme deficiency. Biol. Chem. 2005, 386, 1157−64.
- Abbritti, G., De Matteis, F., Effect of 3,5-diethoxycarbonyl-l, 4-dihydrocollidine on degradation of liver haem. Enzyme 1973, 16, 196−202.
- Unseld, A., de Matteis, F., Destruction of endogenous and exogenous haem by 2-allyl-2-isopropylacetamide: role of the liver cytochrome P-450 which is inducible by phenobarbitone. Int. J. Biochem. 1978, 9, 865−9.
- Ogundipe, O.A., A case of variegate porphyria in association with coeliac disease and bisphosphonate associated dental osteonecrosis. J. Clin. Med. Res. 2009, 1, 292−6.
- Omiecinski, C.J., Bond, J.A., Juchau, M.R., Stimulation by hematin of monooxygenase activity in extra-hepatic tissues from rats, rabbits and chickens. Biochem. Biophys. Res. Commun. 1978, 83, 1004−1 1.
- Namkung, M.J., Faustman-Watts, E., Juchau, M.R., Hematin-mediatcd increases of benzo (a)pyrene mono-oxygenation in maternal, fetal and placental tissues of inducible and non-inducible mouse strains. Dev. Pharmacol. Ther. 1983, 6, 199— 206.
- Schneider, S., Maries-Wright, J., Sharp, K.H., Paoli, M., Diversity and conservation of interactions for binding heme in b-type heme proteins. Nat. Prod. Rep. 2007, 24, 621−30.
- Idkowiak, J., Randell, T., Dhir, V., Patel, P., et al., A missense mutation in the human cytochrome b5 gene causes 46, XY disorder of sex development due to true isolated 17,20 lyase deficiency. J. Clin. Endocrinol. Metab. 2012, 97, E465−75.
- Landfried, D.A., Vuletich, D.A., Pond, M.P., Lecomte, J.T.J., Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins. Gene 2007, 398, 12−28.
- Tomlinson, E.J., Ferguson, S.J., Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apo protein and heme: implications for c type cytochrome biogenesis and folding. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 515 660.
- De Matteis, F., Gibbs, A.H., Martin, S.R., Milek, R.L., Labelling in vivo and chirality of griseofulvin-derived N-alkylated protoporphyrins. Biochem. J. 1991, 280 (Pt3, 813−6.
- Modi, S., Primrose, W.U., Lian, L.Y., Roberts, G.C., Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem. J. 1995, 310 (Pt 3, 939−43.
- Dean, P.A., Rettie, A.E., Turnblom, S.M., Namkung, M.J., Juchau, M.R., Cytosolic activation of hematin-dependent microsomal monooxygenase activity in the lung. Chem. Biol. Interact. 1986, 58, 79−94.
- Billecke, S.S., Draganov, D.I., Morishima, Y., Murphy, P.J.M., et al., The role of hsp90 in heme-dependent activation of apo-neuronal nitric-oxide synthase. J. Biol. Chem. 2004, 279, 30 252−8.
- Sosa, V., Moline, T., Somoza, R., Paciucci, R., et al., Oxidative stress and cancer: an overview. Ageing Res. Rev. 2013, 12, 376−90.
- Zuo, L., Otenbaker, N.P., Rose, B.A., Salisbury, K.S., Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol. Immunol. 2013, 56, 57—63.
- Musatov, A., Robinson, N.C., Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radie. Res. 2012, 46, 1313−26.
- Musatov, A., Hebert, E., Carroll, C.A., Weintraub, S.T., Robinson, N.C., Specific modification of two tryptophans within the nuclear-encoded subunits of bovine cytochrome c oxidase by hydrogen peroxide. Biochemistry 2004, 43, 1003−9.
- Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., et al., Mechanisms of hepatotoxicity. Toxicol. Sci. 2002, 65, 166−76.
- Archakov and Bachmanova (1990) Cytochrome P-450 and active oxygen n.d.
- Fontana, E., Dansette, P.M., Poli, S.M., Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity. Curr. Drug Metab. 2005, 6,413−54.
- Kondrova, E., Stopka, P., Soucek, P., Cytochrome P450 destruction by benzene metabolites 1,4-benzoquinone and 1,4-hydroquinone and the formation of hydroxyl radicals in minipig liver microsomes. Toxicol. In Vitro 2007, 21, 566−75.
- Kuthan, H., Tsuji, H., Graf, H., Ullrich, V., Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system. FEBS Lett. 1978, 91, 343−5.
- Ristau, O., Wagnerova, D.M., Rein, H., Ruckpaul, K., Demethylation of tertiary amines by a reconstituted cytochrome P-450 enzyme system: kinetics of oxygen consumption and hydrogen peroxide formation. J. Inorg. Biochem. 1989, 37, 111— 8.
- Gorsky, L.D., Koop, D.R., Coon, M.J., On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J. Biol. Chem. 1984, 259, 6812−7.
- Ghio, A.J., Stonehuerner, J., Dailey, L.A., Carter, J.D., Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhal. Toxicol. 1999, 11, 37−49.
- Dutton, D.R., Parkinson, A., Reduction of 7-alkoxyresorufins by NADPH-cytochrome P450 reductase and its differential effects on their O-dealkylation by rat liver microsomal cytochrome P450. Arch. Biochem. Biophys. 1989, 268, 617— 29.
- Kusirisin, W., Jaikang, C., Chaiyasut, C., Narongchai, P., Effect of polyphenolic compounds from Solanum torvum on plasma lipid peroxidation, superoxide anion and cytochrome P450 2E1 in human liver microsomes. Med. Chem. 2009, 5, 5838.
- Borthiry, G.R., Antholine, W.E., Kalyanaraman, B., Myers, J.M., Myers, C.R., Reduction of hexavalent chromium by human cytochrome b5: generation of hydroxyl radical and superoxide. Free Radic. Biol. Med. 2007, 42, 738−55- discussion 735−7.
- GILLETTE, J.R., BRODIE, B.B., LA DU, B.N., The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen. J. Pharmacol. Exp. Ther. 1957, 119, 532−40.
- Kuthan, H., Ullrich, V., Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. Eur. J. Biochem. 1982, 126, 583−8.
- Martinkova, M., Kubickova, B., Stiborova, M., Effects of cytochrome P450 inhibitors on peroxidase activity. Neuro Endocrinol. Lett. 2012, 33 Suppl 3, 3340.
- Tripathi, S., Li, H., Poulos, T.L., Structural basis for effector control and redox partner recognition in cytochrome P450. Science 2013, 340, 1227−30.
- Hildebrandt, A.G., Bergs, C., Heinemeyer, G., Schlede, E., et al., Studies on the mechanism of stimulation of microsomal H202 formation and benzo (a)pyrene hydroxylation by substrates and flavone. Adv. Exp. Med. Biol. 1981, 136 Pt A, 179−98.
- Clejan, L.A., Cederbaum, A.I., Structural determinants for alcohol substrates to be oxidized to formaldehyde by rat liver microsomes. Arch. Biochem. Biophys. 1992, 298, 105−13.
- Zhukov, A. A., Archakov, A.I., Complete stoichiometry of free NADPH oxidation in liver microsomes. Biochem. Biophys. Res. Commun. 1982, 109, 813−8.
- Schulz, E., Anter, E., Keaney, J.F., Oxidative stress, antioxidants, and endothelial function. Curr. Med. Chem. 2004, 11, 1093−104.1326. Naviaux, R.K., Oxidative shielding or oxidative stress? J. Pharmacol. Exp. Ther. 2012, 342, 608−18.
- Bae, Y.-A., Cai, G.-B., Kim, S.-H., Zo, Y.-G., Kong, Y., Modular evolution of glutathione peroxidase genes in association with different biochemical properties of their encoded proteins in invertebrate animals. BMC Evol. Biol. 2009, 9, 72.
- Loosemore, M., Light, D.R., Walsh, C., Studies on the autoinactivation behavior of pure, reconstituted phenobarbital-induced cytochrome P-450 isozyme from rat liver. J. Biol. Chem. 1980, 255, 9017−20.
- Komori, M., Imai, Y., Sato, R., Purification and characterization of cytochrome P-450 with high affinity for 7-alkoxycoumarins. J. Biochem. 1984, 95, 1379−88.
- Deloria, L., Abbott, V., Gooderham, N., Mannering, G.J., Induction of xanthine oxidase and depression of cytochrome-P-450 by interferon inducers: genetic difference in the responses of mice. Biochem. Biophys. Res. Commun. 1985, 131, 109−14.
- Guengerich, F.P., Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry 1978, 17, 3633−9.
- Karuzina, I.I., Zgoda, V.G., Kuznetsova, G.P., Samenkova, N.F., Archakov, A.I. Iin in monooxygenase reconstituted system. Free Radic. Biol. Med. 1999, 26, 62 032.
- Ichinose, H., Michizoe, J., Maruyama, T., Kamiya, N., Goto, M., Electron-transfer reactions and functionalization of cytochrome P450cam monooxygenase system in reverse micelles. Langmuir 2004, 20, 5564−8.
- Karuzina, 1.1., Archakov, A.I., Hydrogen peroxide-mediated inactivation of microsomal cytochrome P450 during monooxygenase reactions. Free Radic. Biol. Med. 1994, 17, 557−67.
- Larsen, B.T., Gutterman, D.D., Sato, A., Toyama, K., et al., Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ. Res. 2008, 102, 59−67.
- Sluis-Cremer, N., Naidoo, N., Dirr, H., Class-pi glutathione S-transferase is unable to regain its native conformation after oxidative inactivation by hydrogen peroxide. Eur. J. Biochem. 1996, 242, 301−7.
- Gergel, D., Misik, V., Riesz, P., Cederbaum, A.I., Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide. Arch. Biochem. Biophys. 1997, 337, 239−50.
- Schaefer, W.H., Harris, T.M., Guengerich, F.P., Characterization of the enzymatic and nonenzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heme. Biochemistry 1985, 24, 3254−63.
- Uvarov VYu, Tretiakov, V.E., Archakov, A.I., Heme maintains catalytically active structure of cytochrome P-450. FEBS Lett. 1990, 260, 309−12.
- Wang, X., Medzihradszky, K.F., Maltby, D., Correia, M. a, Phosphorylation of native and heme-modified CYP3 A4 by protein kinase C: a mass spectrometric characterization of the phosphorylated peptides. Biochemistry 2001, 40, 11 318−26.
- Wang, Y., Liao, M., Hoe, N., Acharya, P., et al., A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation. J. Biol. Chem. 2009, 284, 5671−84.
- Bachmanova, G.I., Skotselyas, E.D., Kanaeva, I.P., Kuznetsova, G.P., et al., Reconstitution of liver monooxygenase system in solution from cytochrome P-450 and NADPIi-specific flavoprotein monomers. Biochem. Biophys. Res. Commun. 1986, 139, 883−8.
- Bray, R.C., Cockle, S.A., Fielden, E.M., Roberts, P.B., et al., Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J. 1974, 139, 43−8.
- Fuchs, H.J., Borders, C.L., Affinity inactivation of bovine Cu, Zn superoxide dismutase by hydroperoxide anion, H02-. Biochem. Biophys. Res. Commun. 1983, 116, 1107−13.
- Kowalik-Jankowska, T., Rajewska, A., Jankowska, E., Grzonka, Z., Products of Cu (II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Dalton Trans. 2008, 832−8.
- DeLuca, D.C., Dennis, R., Smith, W.G., Inactivation of an animal and a fungal catalase by hydrogen peroxide. Arch. Biochem. Biophys. 1995, 320, 129−34.
- Blum, J., Fridovich, I., Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 1985, 240, 500−8.
- Barbouti, A., Amorgianiotis, C., Kolettas, E., Kanavaros, P., Galaris, D., Plydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radic. Biol. Med. 2007, 43, 1377−87.
- Galbusera, C., Orth, P., Fedida, D., Spector, T., Superoxide radical production by allopurinol and xanthine oxidase. Biochem. Pharmacol. 2006, 71, 1747−52.
- Hall, R.D., Chamulitrat, W., Takahashi, N., Chignell, C.F., Mason, R.P., Detection of singlet (102) oxygen phosphorescence during chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide. J. Biol. Chem. 1989, 264, 7900−6.
- Kim, K., Erman, J.E., Methionine modification in cytochrome-c peroxidase. Biochim. Biophys. Acta 1988, 954, 95−107.
- Conner, G.E., Salathe, M., Forteza, R., Lactoperoxidase and hydrogen peroxide metabolism in the airway. Am. J. Respir. Crit. Care Med. 2002, 166, S57−61.
- Matheson, N.R., Wong, P. S., Travis, J., Isolation and properties of human neutrophil myeloperoxidase. Biochemistry 1981, 20, 325—30.
- Ohno, Y., Gallin, J.I., Diffusion of extracellular hydrogen peroxide into intracellular compartments of human neutrophils. Studies utilizing the inactivation of myeloperoxidase by hydrogen peroxide and azide. J. Biol. Chem. 1985, 260, 8438−46.
- Vaananen, A.J., Kankuri, E., Rauhala, P., Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain. Free Radic. Biol. Med. 2005, 38, 1 102−11.
- Draczynska-Lusiak, B., Brown, O.R., Asparagine synthetase: an oxidant-sensitive enzyme in Escherichia coli. Microbios 1994, 77, 141−52.
- Tsoukatos, D.C., Liapikos, T.A., Tselepis, A.D., Chapman, M.J., Ninio, E., Platelet-activating factor acetylhydrolase and transacetylase activities in human plasma low-density lipoprotein. Biochem. J. 2001, 357, 457−64.
- Breusing, N., Grune, T., Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol. Chem. 2008, 389, 203−9.
- Xiang, W., Weisbach, V., Sticht, H., Seebahn, A., et al., Oxidative stress-induced posttranslational modifications of human hemoglobin in erythrocytes. Arch. Biochem. Biophys. 2013, 529, 34−44.
- Davies, K.J., Delsignore, M.E., Lin, S.W., Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J. Biol. Chem. 1987, 262, 99 027.
- Meinnel, T., Serero, A., Giglione, C., Impact of the N-terminal amino acid on targeted protein degradation. Biol. Chem. 2006, 387, 839−51.
- Du, J., Gebicki, J.M., Proteins are major initial cell targets of hydroxyl free radicals. Int. J. Biochem. Cell Biol. 2004, 36, 2334−43.
- Pickering, A.M., Davies, K.J.A., Degradation of damaged proteins: the main function of the 20S proteasome. Prog. Mol. Biol. Transl. Sci. 2012, 109, 227−48.
- Park, E., Lee, J.W., Yoo, H.M., Ha, B.H., et al., Structural Alteration in the Pore Motif of the Bacterial 20S Proteasome Homolog HslV Leads to Uncontrolled Protein Degradation. J. Mol. Biol. 2013, 425, 2940−54.
- Kastle, M., Reeg, S., Rogowska-Wrzesinska, A., Grune, T., Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress. Free Radic. Biol. Med. 2012,53,1468−77.
- Carlson, E., Bays, N., David, L., Skach, W.R., Reticulocyte lysate as a model system to study endoplasmic reticulum membrane protein degradation. Methods Mol. Biol. 2005, 301, 185−205.
- Neelam, S., Kakhniashvili, D.G., Wilkens, S., Levene, S.D., Goodman, S.R., Functional 20S proteasomes in mature human red blood cells. Exp. Biol. Med. (Maywood). 2011, 236, 580−91.
- Pagan, J., Seto, T., Pagano, M., Cittadini, A., Role of the ubiquitin proteasome system in the heart. Circ. Res. 2013, 112, 1046−58.
- Fisher, E.A., Khanna, N.A., McLeod, R.S., Ubiquitination regulates the assembly of VLDL in HepG2 cells and is the committing step of the apoB-100 ERAD pathway. J. Lipid Res. 2011, 52, 1170−80.
- Dunlop, R.A., Rodgers, K.J., Dean, R.T., Recent developments in the intracellular degradation of oxidized proteins. Free Radio. Biol. Med. 2002, 33, 894−906.
- Pickering, A.M., Koop, A.L., Teoh, C.Y., Ermak, G., et al., The immunoproteasome, the 20S proteasome and the PA28a (3 proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem. J. 2010, 432, 585−94.
- Ciechanover, A., Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg. Med. Chem. 2013, 21, 3400−10.
- Suraweera, A., Munch, C., Hanssum, A., Bertolotti, A., Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol. Cell 2012, 48, 242−53.
- Dice, J.F., Chaperone-mediated autophagy. Autophagy n.d., 3, 295−9.
- Ronis, M.J., Johansson, I., Hultenby, K., Lagercrantz, J., et al., Acetone-regulated synthesis and degradation of cytochrome P450E1 and cytochrome P4502B1 in rat liver corrected], Eur. J. Biochem. 1991, 198, 383−9.
- Yin, X.-M., Ding, W.-X., Gao, W., Autophagy in the liver. Hepatology 2008, 47, 1773−85.
- Ahlberg, J., Berkenstam, A., Henell, F., Glaumann, H., Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors. J. Biol. Chem. 1985, 260, 5847−54.
- Sadano, IT., Omura, T., Turnover of two drug-inducible forms of microsomal cytochrome P-450 in rat liver. J. Biochem. 1983, 93, 1375−83.
- Ono, Y., Sorimachi, IT., Calpains: an elaborate proteolytic system. Biochim. Biophys. Acta 2012, 1824, 224−36.
- Finley, D., Ubiquitin chained and crosslinked. Nat. Cell Biol. 2002, 4, E121−3.
- Wrighton, K.H., Ubiquitylation: E3 ligases team up. Nat. Rev. Mol. Cell Biol. 2011, 12, 6.
- Sun, L., Trausch-Azar, J.S., Ciechanover, A., Schwartz, A.L., E2A protein degradation by the ubiquitin-proteasome system is stage-dependent during muscle differentiation. Oncogene 2007, 26, 441−8.
- Hampton, R.Y., ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 2002, 14, 476−82.
- Mogk, A., Bukau, B., Cell biology. When the beginning marks the end. Science 2010, 327, 966−7.
- Baumeister, W., Walz, J., Ziihl, F., Seemuller, E., The proteasome: paradigm of a self-compartmentalizing protease. Cell 1998, 92, 367−80.
- Liu, C.-W., Jacobson, A.D., Functions of the 19S complex in proteasomal degradation. Trends Biochem. Sci. 2013, 38, 103−10.
- Li, X., Huang, T., Jiang, G., Gong, W., et al., Proteasome inhibitor MG132 enhances TRAIL-induced apoptosis and inhibits invasion of human osteosarcoma OS732 cells. Biochem. Biophys. Res. Commun. 2013.
- Orlowski, M., Cardozo, C., Michaud, C., Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex.
- Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 1993, 32, 1563−72.
- Ciechanover, A., The ubiquitin-proteasome proteolytic pathway. Cell 1994, 79, 13−21.
- Reinheckel, T., Sitte, N., Ullrich, O., Kuckelkorn, U., et al., Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 1998, 335 (Pt 3, 637−42.
- Davies, K.J., Degradation of oxidized proteins by the 20S proteasome. Biochimie n.d., 83, 301−10.
- Reinheckel, T., Ullrich, O., Sitte, N., Grune, T., Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch. Biochem. Biophys. 2000, 377, 65−8.
- Liu, C.-W., Corboy, M.J., DeMartino, G.N., Thomas, P.J., Endoproteolytic activity of the proteasome. Science 2003, 299, 408−11.
- Hampton, R.Y., Sommer, T., Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol. 2012, 24, 460—6.
- Braun, S., Matuschewski, K., Rape, M., Thorns, S., Jentsch, S., Role of the ubiquitin-selective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 2002, 21,615−21.
- Hill, K., Cooper, A.A., Degradation of unassembled Vphlp reveals novel aspects of the yeast ER quality control system. EMBO J. 2000, 19, 550−61.
- Wilhovsky, S., Gardner, R., Hampton, R., PIRD gene dependence of endoplasmic reticulum-associated degradation. Mol. Biol. Cell 2000, 11, 1697−708.
- Gardner, R.G., Shearer, A.G., Hampton, R.Y., In vivo action of the FIRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell. Biol. 2001, 21, 4276−91.
- Rabinovich, E., Kerem, A., Frohlich, K.-U., Diamant, N., Bar-Nun, S., AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 2002, 22, 626−34.
- Bays, N.W., Gardner, R.G., Seelig, L.P., Joazeiro, C.A., Hampton, R.Y., Hrdlp/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 2001, 3, 24−9.
- Yamazaki, S., Sato, K., Suhara, K., Sakaguchi, M., et al., Importance of thesproline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J. Biochem. 1993, 1 14, 652−7.
- Gonzalez, F.J., Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat. Res. 2005, 569, 101−10.
- Lown, K.S., Bailey, D.G., Fontana, R.J., Janardan, S.K., et al., Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J. Clin. Invest. 1997, 99, 2545−53.
- Roberts, E.S., Hopkins, N.E., Foroozesh, M., Alworth, W.L., et al., Inactivation of cytochrome P450s 2B1, 2B4, 2B6, and 2B11 by arylalkynes. Drug Metab. Dispos. 1997, 25, 1242−8.
- Bock, K.W., Siekevitz, P., Turnover of heme and protein moieties of rat liver microsomal cytochrome b5. Biochem. Biophys. Res. Commun. 1970, 41, 374−80.
- Yang, J., Liao, M., Shou, M., Jamei, M., et al., Cytochrome p450 turnover: regulation of synthesis and degradation, methods for determining rates, and implications for the prediction of drug interactions. Curr. Drug Metab. 2008, 9, 384−94.
- Benharouga, M., Flaardt, M., Kartner, N., Lukacs, G.L., COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments. J. Cell Biol. 2001, 153, 957−70.
- Huan, J.Y., Koop, D.R., Tightly regulated and inducible expression of rabbit CYP2E1 using a tetracycline-controlled expression system. Drug Metab. Dispos. 1999, 27, 549−54.
- Yao, K., Falick, A.M., Patel, N., Correia, M.A., Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1. Identification of an active site heme-modified peptide. J. Biol. Chem. 1993, 268, 59−65.
- He, K., Bornheim, L.M., Falick, A.M., Maltby, D., et al., Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 1998, 37, 17 448−57.
- Wang, H.F., Figueiredo Pereira, M.E., Correia, M.A., Cytochrome P450 3A degradation in isolated rat hepatocytes: 26S proteasome inhibitors as probes. Arch. Biochem. Biophys. 1999, 365, 45−53.
- Korsmeyer, K.K., Davoll, S., Figueiredo-Pereira, M.E., Correia, M.A., Proteolytic degradation of heme-modified hepatic cytochromes P450: A role for phosphorylation, ubiquitination, and the 26S proteasome? Arch. Biochem. Biophys. 1999, 365, 31−44.
- Krappmann, D., Scheidereit, C., A pervasive role of ubiquitin conjugation in activation and termination oflkappaB kinase pathways. EMBO Rep. 2005, 6, 3216.
- Zhukov, A., Werlinder, V., Ingelman-Sundberg, M., Purification and characterization of two membrane bound serine proteinases from rat liver microsomes active in degradation of cytochrome P450. Biochem. Biophys. Res. Commun. 1993, 197, 221−8.
- Mapoles, J., Berthou, F., Alexander, A., Simon, F., Menez, J.F., Mammalian PC-12 cell genetically engineered for human cytochrome P450 2E1 expression. Eur. J. Biochem. 1993,214,735−45.
- Jansson, I., Curti, M., Epstein, P.M., Peterson, J.A., Schenkman, J.B., Relationship between phosphorylation and cytochrome P450 destruction. Arch. Biochem. Biophys. 1990,283,285−92.
- Goasduff, T., Cederbaum, A.I., CYP2E1 degradation by in vitro reconstituted systems: role of the molecular chaperone hsp90. Arch. Biochem. Biophys. 2000, 379, 321−30.
- Zangar, R.C., Kimzey, A.L., Okita, J.R., Wunschel, D.S., et al., Cytochrome P450 3A conjugation to ubiquitin in a process distinct from classical ubiquitination pathway. Mol. Pharmacol. 2002, 61, 892−904.
- Jones, B.E., Liu, H., Lo, C.R., Koop, D.R., Czaja, M.J., Cytochrome P450 2E1 expression induces hepatocyte resistance to cell death from oxidative stress. Antioxid. Redox Signal. 2002, 4, 701−9.
- Bardag-Gorce, F., Li, J., French, B.A., French, S.W., Ethanol withdrawal induced CYP2E1 degradation in vivo, blocked by proteasomal inhibitor PS-341. Free Radic. Biol. Med. 2002, 32, 17−21.
- Masaki, R., Yamamoto, A., Tashiro, Y., Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. J. Cell Biol. 1987, 104, 1207−15.
- Tsuji, H., Akasaki, K., Identification and characterization of lysosomal enzymes involved in the proteolysis of phenobarbital-inducible cytochrome P450. Biol. Pharm. Bull. 1994, 17, 568−71.
- Bardag-Gorce, F., Li, J., French, B.A., French, S.W., The effect of ethanol-induced CYP2E1 on proteasome activity: the role of 4-hydroxynonenal. Exp. Mol. Pathol. 2005, 78, 109−15.
- Eliasson, E., Mkrtchian, S., Halpert, J.R., Ingelman-Sundberg, M., Substrate-regulated, cAMP-dependent phosphorylation, denaturation, and degradation of glucocorticoid-inducible rat liver cytochrome P450 3A1. J. Biol. Chem. 1994, 269, 18 378−83.
- Murray, B.P., Correia, M.A., Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae? Arch. Biochem. Biophys. 2001, 393, 106−16.
- Ronis, M.J., Ingelman-Sundberg, M., Acetone-dependent regulation of cytochrome P-450j (IIE1) and P-450b (IIB1) in rat liver. Xenobiotica. 1989, 19, 1161−5.
- Furuno, K., Ishikawa, T., Kato, K., Isolation and characterization of autolysosomes which appeared in rat liver after leupeptin treatment. J. Biochem. 1982, 91, 194 350.
- Ueno, T., Muno, D., Kominami, E., Membrane markers of endoplasmic reticulum preserved in autophagic vacuolar membranes isolated from leupeptin-administered rat liver. J. Biol. Chem. 1991, 266, 18 995−9.
- Huan, J.-Y., Streicher, J.M., Bleyle, L.A., Koop, D.R., Proteasome-dependent degradation of cytochromes P450 2E1 and 2B1 expressed in tetracycline-regulated HeLa cells. Toxicol. Appl. Pharmacol. 2004, 199, 332−43.
- Licad-Coles, E., He, K" Yin, H., Correia, M.A., Cytochrome P450 2C11: Escherichia coli expression, purification, functional characterization, and mechanism-based inactivation of the enzyme. Arch. Biochem. Biophys. 1997, 338, 35−42.
- Ortiz de Montellano, P.R., Beilan, H.S., Kunze, K.L., N-Alkylprotoporphyrin IX formation in 3,5-dicarbethoxy-l, 4-dihydrocollidine-treated rats. Transfer of the alkyl group from the substrate to the porphyrin. J. Biol. Chem. 1981, 256, 6708−13.
- Barmada, S., Kienle, E" Koop, D.R., Rabbit P450 2E1 expressed in CHO-K1 cells has a short half-life. Biochem. Biophys. Res. Commun. 1995, 206, 601−7.
- Zhukov, A., Ingelman-Sundberg, M., Selective fast degradation of cytochrome P-450 2E1 in serum-deprived hepatoma cells by a mechanism sensitive to inhibitors of vesicular transport. Eur. J. Biochem. 1997, 247, 3713.
- Freeman, J.E., Wolf, C.R., Evidence against a role for serine 129 in determining murine cytochrome P450 Cyp2e-1 protein levels. Biochemistry 1994, 33, 13 963−6.
- Yang, M.X., Cederbaum, A.I., Role of the proteasome complex in degradation of human CYP2E1 in transfected HepG2 cells. Biochem. Biophys. Res. Commun. 1996, 226, 711−6.
- Burrows, J.F., Johnston, J.A., Regulation of cellular responses by deubiquitinating enzymes: an update. Front. Biosci. (Landmark Ed. 2012, 17, 1184−200.
- Banerjee, A., Kocarek, T.A., Novak, R.F., Identification of a ubiquitination-Target/Substrate-interaction domain of cytochrome P-450 (CYP) 2E1. Drug Metab. Dispos. 2000, 28, 118−24.
- Lewis, M.D., Roberts, B.J., Role of CYP2E1 activity in endoplasmic reticulum ubiquitination, proteasome association, and the unfolded protein response. Arch. Biochem. Biophys. 2005, 436, 237−45.
- He, K., Iyer, K.R., Hayes, R.N., Sinz, M.W., et al., Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 1998, 11, 252−9.
- Wilkinson, D., Ramsdale, M., Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. Biochem. Soc. Trans. 2011, 39, 1502−8.
- Tsai, B., Ye, Y., Rapoport, T.A., Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol. 2002, 3, 246−55.
- Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., et al., Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 1996, 379, 466−9.
- Zgoda, V., Tikhonova, O., Viglinskaya, A., Serebriakova, M., et al., Proteomic profiles of induced hepatotoxicity at the subcellular level. Proteomics 2006, 6, 4662−70.
- Wiechelman, K.J., Braun, R.D., Fitzpatrick, J.D., Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal. Biochem. 1988, 175, 231−7.
- Bornheim, L.M., Underwood, M.C., Caldera, P., Rettie, A.E., et al., Inactivation of multiple hepatic cytochrome P-450 isozymes in rats by allylisopropylacetamide: mechanistic implications. Mol. Pharmacol. 1987, 32, 299−308.
- Wang, H., Dick, R., Yin, H., Licad-Coles, E., et al., Structure-function relationships of human liver cytochromes P450 3A: aflatoxin B1 metabolism as a probe. Biochemistry 1998, 37, 12 53615.
- Karuzina, 1.1., Bachmanova, G.I., Mengazetdinov, D.E., Miasoedova, K.N., Zhikhareva, V.O., Isolation and properties of cytochrome P-450 from rabbit liver microsomes]. Biokhimiia (Moscow, Russ. 1979, 44, 1049−57.
- Yasukochi, Y., Masters, B.S., Some properties of a detergent-solubilized NADPPI-cytochrome c (cytochrome P-450) reductase purified by biospecific affinity chromatography. J. Biol. Chem. 1976, 251, 5337−44.
- OMURA, T., SATO, R., THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J. Biol. Chem. 1964, 239, 2379−85.
- NASPI, T., The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55, 416−21.
- Thurman, R.G., Ley, H.G., Scholz, R., Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur. J. Biochem. 1972, 25, 420−30.
- Sardiu, M.E., Washburn, M.P., Construction of protein interaction networks based on the label-free quantitative proteomics. Methods Mol. Biol. 2011, 781, 71−85.
- Kopylov, A.T., Zgoda, V.G., Lisitsa, A. V, Archakov, A.I., Combined use of irreversible binding and MRM technology for low- and ultralow copy-number protein detection and quantitation. Proteomics 2013, 13, 727−42.
- Kopylov, A.T., Zgoda, V.G., Archakov, A.I., Label-free quantitative analysis of proteins using mass-spectrometry], Biomeditsinskaia khimiia n.d., 55, 125−39.
- Correia, M.A., Farrell, G.C., Olson, S., Wong, J.S., et al., Cytochrome P-450 heme moiety. The specific target in drug-induced heme alkylation. J. Biol. Chem. 1981, 256, 5466−70.
- Billecke, S.S., Draganov, D.I., Morishima, Y., Murphy, P.J.M., et al., The role of hsp90 in heme-dependent activation of apo-neuronal nitric-oxide synthase. J. Biol. Chem. 2004, 279, 30 252−8.
- Chu, F., Maynard, J.C., Chiosis, G., Nicchitta, C. V, Burlingame, A.L., Identification of novel quaternary domain interactions in the PIsp90 chaperone, GRP94. Protein Sci. 2006, 15, 1260−9.
- Im, S.-C., Waskell, L., The interaction of microsomal cytochrome P450 2B4 with its redox partners, cytochrome P450 reductase and cytochrome b (5). Arch. Biochem. Biophys. 2011, 507, 144−53.
- Stadtman, E.R., Role of Oxidant Species in Aging. Curr. Med. Chem. 2004, 11, 1105−1112.
- Tavares, A.F.N., Nobre, L.S., Saraiva, L.M., A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules. FEMS Microbiol. Lett. 2012, 336, 1−10.
- Kostova, Z., Wolf, D.PI., Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J. Cell Sci. 2005, 118, 1485−92.
- Walsh, A.A., Szklarz, G.D., Scott, E.E., Pluman cytochrome P450 1A1 structure and utility in understanding drug and xenobiotic metabolism. J. Biol. Chem. 2013, 288, 12 932−43.
- Archakov, A., Zgoda, V., Kopylov, A., Naryzhny, S., et al., Chromosome-centric approach to overcoming bottlenecks in the Human Proteome Project. Expert Rev. Proteomics 2012, 9, 667−76.
- Pan, C., Xu, S., Zhou, IT., Fu, Y., et al., Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 2007, 387, 193−204.
- Bantscheff, M., Lemeer, S., Savitski, M.M., Kuster, B., Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 2012, 404, 939−65.
- Megger, D.A., Pott, L.L., Ahrens, M., Padden, J., et al., Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines. Biochim. Biophys. Acta 2013.
- Ono, M., Shitashige, M., Honda, K., Isobe, T., et al., Label-free quantitative proteomies using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol. Cell. Proteomies 2006, 5, 1338−47.
- Yu, C., Gunsalus, I.C., Cytochrome P-450cam. III. Removal and replacement of ferriprotoporphyrin IX. J. Biol. Chem. 1974, 249, 107−10.
- Lundberg, M., Johansson, C., Chandra, J., Enoksson, M., et al., Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J. Biol. Chem. 2001, 276, 26 269−75.
- Davies, K.J., Delsignore, M.E., Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J. Biol. Chem. 1987, 262, 9908−13.
- Henderson, C.J., Otto, D.M.E., Carrie, D., Magnuson, M.A., et al., Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J. Biol. Chem. 2003, 278, 13 480−6.
- McGehee, R.E., Ronis, M.J., Badger, T.M., Regulation of the hepatic CYP 2E1 gene during chronic alcohol exposure: lack of an ethanol response element in the proximal 5'-flanking sequence. DNA Cell Biol. 1997, 16, 725−36.
- Bonifacino, J.S., Traub, L.M., Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 2003, 72, 395−447.
- Pickart, C.M., Cohen, R.E., Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177−87.
- Faucette, S.R., Zhang, T.-C., Moore, R., Sueyoshi, T., et al., Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J. Pharmacol. Exp. Ther. 2007, 320, 72−80.
- Zhang, M., Pickart, C.M., Coffino, P., Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBOJ. 2003, 22, 1488−96.1. БЛАГОДАРНОСТИ:
- Автор выражает искреннюю признательность научному консультанту академику Арчакову Александру Ивановичу, к.б.н. Тихоновой Ольге Валентиновне и всем сотрудникам лаборатории Системной биологии за помощь и поддержку при написании данной работы.