Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π½ΠΈΠ΅ рСгрСссионных ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ

Π Π΅Ρ„Π΅Ρ€Π°Ρ‚ΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π•ΡΡ‚ΡŒ ковариационная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° ошибок рСгрСссии уравнСния (5.3). БоотвСтствСнно, ΠΎΡ†Π΅Π½ΠΊΠ° ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² уравнСния (5.3) ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ b* = (X` Π£ -1 X)-1 X` Π£Y. МоТно ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ оцСнивания, Ссли ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ уравнСния ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΊ Π½Π΅ΠΌΡƒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ². ΠšΠΎΡΠ²Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎ ΡΡƒΡ‚ΠΈ сводится ΠΊ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π½ΠΈΡŽ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

ΠžΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π½ΠΈΠ΅ рСгрСссионных ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ΠšΠΎΡΠ²Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² ΠΏΠΎ ΡΡƒΡ‚ΠΈ сводится ΠΊ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π½ΠΈΡŽ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹.

Y1 = a1 + b1X1 + Π½1, (5.1).

Y2 = a2 + b2X2 + Π½2. (5.2).

МоТно ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ оцСнивания, Ссли ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ уравнСния ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΊ Π½Π΅ΠΌΡƒ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ².

ΠŸΡƒΡΡ‚ΡŒ Π₯1 0 Y1 Π²1 Π½1.

Π₯ = [ ]; Y = …; Π² = …; Π½ = … .

0 Π₯2 Y2 Π²2 Π½2

Π’ΠΎΠ³Π΄Π° уравнСния (5.1) ΠΈ (5.2) ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅:

Y = XΠ² + Π½. (5.3).

ΠŸΡƒΡΡ‚ΡŒ Π£11 = Cov (Π½1, Π½1), Π£12 = Cov (Π½1, Π½2), Π£22 = Cov (Π½2, Π½2).

Если уравнСния (5.1) ΠΈ (5.2) ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ условиям классичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ Π£ij — скалярныС.

Π’ΠΎΠ³Π΄Π° Π£11 Π£12

Π£ = [ ——————- ].

Π£12 Π£22

— Π΅ΡΡ‚ΡŒ ковариационная ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° ошибок рСгрСссии уравнСния (5.3). БоотвСтствСнно, ΠΎΡ†Π΅Π½ΠΊΠ° ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² уравнСния (5.3) ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ b* = (X` Π£ -1 X)-1 X` Π£Y.

Для практичСского примСнСния ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² слСдуСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ Π£. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ, ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ² ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² сначала ΠΊ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡΠΌ (5.1) ΠΈ (5.2) ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, Π½Π°ΠΉΡ‚ΠΈ остатки рСгрСссии ΠΈ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π² ΠΊΠ°Ρ‡Π΅ΡΡ‚Π²Π΅ ΠΎΡ†Π΅Π½ΠΎΠΊ ΠΌΠ°Ρ‚Ρ€ΠΈΡ† Π£ij Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½Ρ‹Π΅ ΠΊΠΎΠ²Π°Ρ€ΠΈΠ°Ρ†ΠΈΠΈ CΡ„v (ei, ej). ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, эти ΠΎΡ†Π΅Π½ΠΊΠΈ Π±ΡƒΠ΄ΡƒΡ‚ ΡΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ оцСнивания, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ косвСнного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ². Если Π½Π°Π±ΠΎΡ€Ρ‹ экзогСнных ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… Π² ΠΎΠ±ΠΎΠΈΡ… уравнСниях ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚ΠΎ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ оцСнивания совпадаСт с ΠΎΡ†Π΅Π½ΠΊΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ², ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡΠΌ ΠΏΠΎ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ