Получение, характеристика и аналитическое применение антител к фуллерену C60
Диссертация
Получены и охарактеризованы иммунореагенты для детекции фуллерена конъюгаты фуллерена с белками, полии моноклональные антитела к фуллерену С60, конъюгат фуллерена С60 с флуоресцентной меткой. Показана возможность применения разработанного иммуноферментного метода для определения фуллерена С6о в гомогенатах органов животных. Разработка иммуноферментного метода определения фуллерена C (l0, его… Читать ещё >
Содержание
- Глава 1. ОБЗОР ЛИТЕРАТУРЫ
- 1. 1. Механизм иммунного распознавания и индукции иммунного ответа
- 1. 2. Естественные антигены и строение антигенных детерминант
- 1. 3. Свойства техногенных наночастиц и проблемы оценки их 12 биобезопасности
- 1. 4. Фуллерены, их основные структурные свойства, трансформация и 14 модификация в разных средах
- 1. 5. Опыт получения антител против техногенных наночастиц
- 1. 6. Пробоподготовка для проведения иммунохимических методов 26 анализа
- Глава 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ
- 2. 1. Материалы и оборудование
- 2. 2. Методы исследования 29 РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
- Глава 3. Характеристика препаратов фуллерена Сш
- Глава 4. Получение конъюгатов фуллерен С60-белок
- Глава 5. Получение и скрининг антител к фуллерену С6о
- 5. 1. Получение антител
- 5. 2. Поликлональные антитела
- 5. 3. Моноклональные антитела
- Глава 6. Измерение констант иммунного взаимодействия на 52 иммуносенсоре Biacore X
- Глава. 7, Разработка иммуноферментного анализа фуллерена и его 57 производных с использованием поли- и моноклональных антител
- 7. 1. Взаимодействие конъюгированных форм фуллерена с поликлональными антителами
- 1. 2. Взаимодействие конъюгированных форм фуллерена с 61 моноклональными антителами
- 7. 3. Взаимодействие водорастворимых производных фуллерена с антителами
- 7. 4. Иммуноферментный анализ фуллерена Сбо
- Глава 8. Разработка поляризационного флуоресцентного иммуноанализа фуллерена
- 8. 1. Синтез конъюгата фуллерена Сео с производным флуоресцеина
- 8. 2. Контроль специфичности моноклональных антител к фуллерену С6о 73 методом поляризационного флуоресцентного иммуноанализа
- 8. 3. Поляризационный флуоресцентный иммуноанализ фуллерена С60 с 74 использованием моноклональных антител
- Глава 9. Иммуноферментный анализ фуллерена в биологических пробах
- ВЫВОДЫ
Список литературы
- Петровский Л.Б. Фуллерены в биологии и медицине: прблемы и перспективы Н Фундаментальные направления молекулярной медицины, 2005. С. 195−268.
- Bosi S., Da Ros Т., Spolluto G., et al. Fullerene derivatives: an attractive tool for biological applications // Eur.J. Med. Chem. 2003. V. 38. P. 913−923.
- Da Ros Т., Spolluto G., Proto M. Biological application of fullerene derivatives: a brief overview // Croat. Chem. Acta. 2001. V. 74. N 4. P. 743−755.
- Meng J., Wang D.L., Wang P.C., et al. Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics // J. Nanosci. Nanotechnol. 2010. V.10.N 12. P. 8610−8616.
- Prylutska S.V., Grynyuk I.I., Palyvoda K.O., et al. Photoinduced cytotoxic effect of fullerenes C60 on transformed T-lymphocytes // Exp. Oncol. 2010. V. 32. N 1. P. 29−32.
- Tutt L.W. and A. Kost Optical limiting performance of C60 and C70 solutions //Nature. 1992. V. 356. N6366. P. 225−226.
- Thompson В. C. and Frechet J.M. Polymer-fullerene composite solar cells // Angew. Chem. Int. Ed. Engl. 2008. V. 47. N 1. P. 58−77.
- Aschberger K., Johnston H. J., Stone V., et al. Review of fullerene toxicity and exposure—appraisal of a human health risk assessment, based on open literature // Regul. Toxicol. Pharmacol. 2010. V. 58. N 3. P. 455−473.
- Абелев Г. И. Основы иммунитета // Соросовский образовательный журнал, 1996. № 5. С. 4−10.
- Ройт А. Основы иммунологии //М.: Мир, 1991. 328 с.
- Степанов В.М., Молекулярная биология. Структура и функции белков // М: Высшая школа, 1996. 355 с.
- Amzel L.M., Poljak R.J., Saul F., et al. The tree dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution // Proc. Nat. Acad. Sci. USA. 1974. V. 71. N 4. P. 1427−1430.
- Roon A.M., Pannu N.S., Hokke C.H., et al. Crystallization and preliminary X-ray analysis of an anti-Lew isX Fab fragment with and without its Lewis X antigen // ActaCryst. 2003. V.59. P. 1306−1309.
- Jaheway C.A., Travers P. Immunology: The immune system in health and sis ease // Publishing Inc., 1996. 635 p.
- Медицинская микробиология, вирусология и иммунология: Учебник, под ред. А. А. Воробьева. 2004. М.: Мед. информац. агентство. 601 с.
- Lee N., McAdam DP., Skerritt J.H. Development of immunoassays for type ii synthetic pyrethroids. 1. hapten design and application to heterologous and homologous assays. И J. Agric. Food Chem. 1998. V. 46. N 2. P. 520−534.
- Katmeh M.F., Aherne G.W., Stevenson D. Competitive enzyme-linked immunosorbent assay for the determination of the phenylurea herbicide chlortoluron in water and biologicalfluids. //Analyst. 1996. V. 121. N 11. P. 1699−1703.
- Franek M., Pouzar V., Kolar V. Enzyme-immunoassays for polychlorinated biphenyls: structural aspects ofhapten-antibody binding // Anal. Chim. Acta. 1997. V. 347. N 1−2. P. 163−176.
- Hermanson G.T., Bioconjugate techniques. V. 2. 2008, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto- Academic Press. P. 745−783.
- Bauminger S., Wilchek M., The use of carbodiimides in the preparation of immunizing conjugates. //Meth. Enzymol. 1980. V. 70. P. 151−159.
- Erlanger B.F. The preparation of antigenic hapten-carrier conjugates: a survey //Meth. Enzymol. 1980. V. 70. P. 85−104.
- Самуилов В.Д. Иммуноферментный анализ // Соросовский образовательный журнал, 1999. № 12. С. 9−15.
- Егоров A.M., Осипов А. П., Дзантиев Б. Б., Гаврилова Е. М. Теория и практика иммуноферментного анализа. 1991. М.: Высшая школа. 288 с.
- Zherdev A.V., Romanenko O.G., Dzantiev В.В. Interaction between antibodies and hapten-protein conjugates of different composition: theoretical predictions and experimental data. // J. Immunoassay. 1997. V. 18. N 1. P. 67−95.
- Danilova N.P. ELISA screening of monoclonal antibodies to haptens: influence of the chemical structure of hapten-protein conjugates. II J. Immunol. Methods. 1994. V. 173. N 1. P. 111−117.
- Bouwmeester H., Lynch I., Marvin H.J.P., et al. Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices // Nanotoxicology 2010. V. 5. N 1. P. 1−11.
- Peralta-Videa J R. Zhao L. Nanomaterials and the environment: a review for the biennium 2008−2010 // J. Hazard. Mater. 2011. V. 186. N 1. P. 1−15.
- Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles // Environ. Health Perspect. 2005. V. 113. P. 823−839.
- Oberdorster G., Maynard A., Donaldson K., et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy // Part. Fibre Toxicol. 2005. V. 2. N 1. P. 8−43.
- Donaldson K., Aitken R, Tran L., et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety II Toxicol. Sci. 2006. V. 92. N 1. P. 5−22.
- Borra P. J. A., Robbins D., Haubold S., et al. The potential risks of nanomaterials: a review carried out for ECETOC i! Particle Fibre Toxicol. 2006. V. 3. N 11. P. 1−35.
- Colvin V.L. The potential environmental impact of engineered nanomaterials I I Nat. Biotechnol. 2003. V. 21. N 10. P. 1166−1170.
- Crespilho F.N., Ghica M.E., Gouveia-Caridade C, et al. Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimised architectures for biosensing // Talanta. 2008. V. 76. N 4. P. 922−928.
- Costigan S. The toxicology of nanoparticles used in healthcare products // MHRA, 2006. P. 65
- Kabanov A.V. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines II Adv. Drug Del. Rev. 2006. V. 58. N15. P. 1597−1621.
- Borm P.J., Kreyling W. Toxicological hazards of inhaled nanoparticles- potential implications for drug delivery Hi. Nanosci. Nanotecbnol. 2004. V. 4. N 4. P. 521−531.
- Chavanpatil M.D., Khdair A., Panvam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery I I J. Nanosci. Nanotecbnol. 2006. V. 6. N 9−10. P. 2651−2663.
- O’Hagan D.T. The intestinal uptake of particles and the implications for drug and antigen delivery II J. Anal. 1996. V. 189. P. 477−482.
- Semmler M., Seitz J., Erbe F., et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs //Inhal. Toxicol. 2004. V. 16. N 6−7. P. 453−459.
- Siegrist M., Stampfli N., Kastenholz H., et al. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging // Appetite. 2008. V. 51. N 2. P. 283−290.
- Siegrist M., Cousin M.E., Kastenholz H., et al. Public acceptance of nanotechnology foods andfood packaging: the influence of affect and trust H Appetite. 2007. V. 49, N 2. P. 459−466.
- Schulte P.A., Salamanca-Buentello F. Ethical and scientific issues of nanotechnology in the workplace // Environ. Health Perspect. 2007. V. 115. N 1. P. 5−12.
- Kuzma J., Romanchek J., Kokotovich A. Upstream oversight assessment for agrifood nanotechnology: a case studies approach II Risk. Anal. 2008. V. 24. N 4. 10 811 098.
- Baron P.A., Deye G.J., Chen B.T., et al. Aerosolization of single-walled carbon nanotubesfor an inhalation study! Inhal. Toxicol. 2008. V. 20. N 8. P. 751−760.
- Beckett W.S., Chalupa D.F., Pauly-Brown A. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: A human inhalation study II Am. J. Respir. Crit. Care Med. 2005. V. 171. P. 1129−1135.
- Savolainen K., Alenius H., et al. Risk assessment of engineered nanomaterials andnanotechnologies a review // Toxicology. 2010. V. 269. N 2−3. P. 92−104.
- Nowack B. and Bucheli T.D. Occurrence, behavior and effects of nanoparticles in the environment// Environ. Pollut. 2007. V. 150. P. 5−22.
- Klaine S.J., Alvarez P.J., Batley G.E. et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects // Environ. Toxicol. Chem. 2007. V. 27. P. 1825−1851.
- Som C., Berges M., Chaudhry Q., et al. The importance of life cycle concepts for the development of safe nanoproducts I I Toxicology. 2010. V. 269. N 2−3. P. 160 169.
- Stone V., Nowack B., Ducatman B.S. et al. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation // Sci. Total. Environ. 2010. V. 408. N 7. P. 1745−1754.
- Zhang L. and Webster T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration II Nano Today. 2009. V. 4. N 1. P. 66−80.
- BeruBe К., Bal harry D., Sexton K., et al. Combustion-derived nanoparticles: mechanisms of pulmonary toxicity // Clin. Exp. Pharmacol. Physiol. 2007. V. 34. N 10. P.1044−1050.
- Bhol K.C., Schechter P J. Effects of nanocrystalline silver (NPI32101) in a rat model of ulcerative colitis H Dig. Dis. Sci. 2007. V. 52. N 10. P. 2732−2742.
- Osawa E. Superaromaticity II Kogaku (Kyoto). 1970. V. 25. P. 854.
- Yashida Z., Osawa E. Aromaticity // Kyoto: Kagakudojin. 1971. P. 174−178
- Бочвар Д-А., Гальперн Е. Г. О гипотетических системах: карбододекаэдер, s-икозаэдране и карбо- s-жозаэдре // ДАН СССР. 1973. Т. 209. С. 610−612.
- Kroto H.W., Heath S., О' Brien S.C., et al. C60: Buckminsterfullerene //Nature. 1985. V. 318. P. 162−163.
- Curl R.F., Smalley R.E., Kroto H.W., et al. How the news that we were not the first to conceive of soccer ball C60got to us И J. Mol. Graph. Modell. 2001. V.19. P. 185−186.
- Dyushev G.A. Low temperature plasma and fullerenes // Plasma Device Operations. 2002. V. 10. P. 63−98.
- Diederich F., Ettl R, Rubin Y., Whetten R.L., et al The higher fulllrenes -isolation and characterization of С76, C&4, C90, C94, and C70O, an oxide of D5h-Cja // Science. 1991. V. 252. P. 548−551.
- Da Ros Т., Prato M. Medicinal chemistry with fullerenes and fullerene derivatives // J. Chem. Soc. Chem. Commun. 1999. P. 663−669.
- Массалова O.B., Шепелев A.B., Атанадзе C.H. Иммуностимулирующее действие водорастворимых производных фуллерена — перспективных адьювантов для вакцин нового поколения // Докл. РАН. 1999. Т. 369. № 3. С. 411 413.
- Елецкий А.В., Смирнов Б. М. Фуллерены и структуры углерода И Усп. физ. наук. 1995. Т. 165. С. 977−1009.
- Krusic P.J., Wasserman P.N., Keizer P.N., et al Radical reaction of C60 H Science. 1991. V. 254. P. 1183−1185.
- Morton J.R., Negri F., Preston K.F. Addition of free radicals to Сб0 И Acc. Chem. Res. 1998. V. 31. P. 63−69.
- Arbogast J.W., Darmanyan A.P., Foote C.S., et al. Photophysicalproperties of sixty atom carbon molecule Сбо H J. Phys. Chem. 1991. V. 95. P. 11−12.
- Boorum V.V., Vasilev Y.V., Drewello Т., et al Groundwork for a rational synthesis of C60: cyclodehydrogenation of a C60H30 polyarene И Science. 2001. V. 294. P. 828−831.
- Yasuda A. Chemical synthesis scheme for a C6o fullerene H Carbon. 2005. V.43. P. 855−894.
- Hirsch A. Principles of fullerene reactivity II Topics. Curr. Chem. 1996. V. 199. P. 1−65.
- Юрковская M.A., Трушков И. В. Реакции циклоприсоединений к бакмгтстерфуллерену Сб0: достижения и перспективы // Изв. АН. Сер. хим. 2002. № 3. С. 343−413.
- Hirsch A. Addition reactions of fullerene C60II Synthesis. 1995. P. 895−913.
- Barry H., John M.C. Free radical in biology and medicine //Oxford University Press. 4th Edition. 2006.
- Foote C.S. Photophysical and photochemical properties of fullerenes // Topics Curr. Chem. 1994. V. 169. P. 347−363.
- Briviba КKlotz L.O., Sies H. Toxic and signaling effects of photochemically or chemically generated singlet oxgen in biological systems I I Biol. Chem. 1997. V. 378. P. 1259−1265.
- Piotrovsky L.B., Kiselev O.I. Fullerenes and viruses. Fullerenes, Nanotubes U Carbone Nanostruct. 2004. V. 12. P. 397−403.
- Lin Y.-L., Lei H.-Y., Luh T.-Y., Chou C.-K., Liu H.-S. Light-independent inactivation of dengue-2 virus by carboxyfullerene C3 isomer // Virology. 2000. V. 275. P. 258−262.
- Wang Y., Cao J., Schuster D.I., Wilson S.R. A superior synthesis of 6,6.-methanofullerenes: the reaction of sulfonium ylides with C60H Tetrahedron Lett. 1995. V. 36. P. 6843−6846.
- Aggarwal P., Hall J. В., McLeland С. В., et al. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy И Adv. Drug. Deliv. Rev. 2009. V. 61. N 6. P. 428−437.
- Mailander V. and Landfester К. Interaction of nanoparticles with cells // Biomacromolecules. 2009. V. 10. N 9. P. 2379−2400.
- Karmali P. P. and Simberg D. Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems II Expert. Opin. Drug. Deliv. 2011. V. 8. N 3. P. 343−357.
- Heiland A., Scheringer M., Siegris M., et al. Risk assessment of engineered nanomaterials: a survey of industrial approaches // Environ. Sei. Technol. 2009. V. 42. N 2. P. 640−646.
- Kolosnjaj J., Szwarc H., Moussa F. Toxicity studies of fullerenes and derivatives I I Adv. Exp. Med. Biol. 2007. V. 620. P. 168−180.
- Lam C. W., James J. Т., McCluskey R., et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks // Crit. Rev. Toxicol. 2006. V. 36. N 3. P. 189−217.
- Khlebtsov N. and Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies I I Chem. Soc. Rev. 2011. V. 40. N3. P. 1647−1671.
- Park E.J., Bae E., Yi J., et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles // Environ. Toxicol. Pharmacol. 2010. V. 30. N 2. P. 162−168.
- Scrivens W.A., Tour J.M., Creek K.E., et al. Synthesis of 14C-labeled Cm its suspension in water and its uptake by humfit keratinocytes I I J. Am. Chem. Soc. 1994. V. 116. P. 4517−4518.
- Moussa F., Chretien P., Dubois P., et al. The influence of C6o powders on cultured human leukocytes 11 Full. Sei. Techno. 1995. V. 3. P. 333−342.
- Male D., Champion В., Cooker A. Advanced Immunology // Chap. XI: Lymphokints. London: Cower medical Publishing Ltd. 1987. P. 1−10.
- Виноградова JI.B., Меленевская Е. Ю., Хачатуров A.C и др. Водорастворимые комплексы фуллерена C6q с п ол и-N -инилпирр о л и доном И Высокомолекулярные соединения. 1998. Т. 40. С. 1854−1862.
- Chiron J. Lamande J., Moussa F., et al. Effect of «micronized» C60fullerene on the microbial growth in vitro // Ann. Pharm. Fr. 2000. V. 58. P. 170−175.
- Sakai A., Yamakoshi Y.N., Miyata N. The effects of fullerenes on the initiation and promotion stages of BALB/3T3 cell transformation // Full. Sci. Technol. 1995. V. 3. P. 377−388.
- Huang H.C., Jan T.R., Yeh S.F. Inhibitory effect of curcumin, an antiinflammatory agent, on vascular smooth muscle cell proliferation // Eur. J. Pharmacol. 1992. V. 221. P. 381−384.
- Miyazawa K., Mashino Т., Suga T. Structural characterization of the C (, o (COOC2H5)2j whisker prepared by the liquid- liquid interfacial precipitation method I I J. Mater. Res. Jpn. 2004. V. 29. P. 537−540.
- Tsuji J.S., Maynard A.D., Howard P.C., et al. Research strategies for safety evaluation of nanomaterials, Part IV: Risk assessment of nanoparticles II Toxicol. Sci. 2006. V. 89. N1. P. 42−50.
- Tsai M.C., Chen Y.H., Chiang L. Y. Polyhydroxylated C60, fullerenol, a novel free-radical trapper, prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in-vitro 115. Pharm. Pharmacol. 1997. V. 49. N 4. P. 438−445.
- Chen C., Xing G., Wang J., et al. MultihydroxylatedGdC82(OH)2J"nanoparticles: antineoplastic activity of high efficiency and low toxicity И Nano. Lett. 2005. V. 5. N 10. P. 2050−2057.
- Захаренко Л.П., Захаров И. К., Васюнина E.A. Определение генотоксичности фуллерена Сво и фуллерола методом соматических озаикое на клетках крыла Drosophila melanogaster и в SOS-хромотесте II Генетика. 1997. Т. 33. С.405−409.
- Moriguchi T., Yano K., Hokari S., et al. Effect of repeated application of C60 combined with UVA radiation onto hairless mouse back skin H Full. Sci. Technol. 1999. V. 7. P. 195−202.
- Sayes C.M., Reed K.L., Warheit D.B. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles // Toxicol. Sci. 2007. V.97.N1.P. 163−180.
- Gharbi N., Pressac M., Hadchouel M., et al. 60. Fullerene is an in vivo powerful antioxidant with no acute or sub-acute toxicity // Nano Letters. 2005. V. 5. P. 2578−2585.
- Moussa F., Trivin F., Ceolin R., et al. Early effects of C^o administration in Swiss mice: a preliminary account for in vivo C60 toxicity II Full. Sci. Technol. 19%. V. 4. P. 21−29.
- Andrievsky G.V., Klochkov V.K., Bordyuh A., et al. Comparative analysis of two aqueous-colloidal solutions of C6ofullerene with help of Ft-Ir reflectance and Uv-Vis spectroscopy //Chem. Phys. Letters. 2002. V. 364. P. 8−17.
- Avdeev M.V., Khokhryakov A.A., Tropin T.V., et al. Structural features of molecular-colloidal solutions of C^ fullerenes in water by small-angle neutron scattering // Langmuir. 2004. V. 20. P. 4363−4368.
- Roslyakov A.D., Andrievsky G.V., Petrenko A.Yu., et al. Cytotoxic and antioxydant properties of water solutions of the native fullerenes on in vitro models // Zh. Akad. Med. Nauk Ukrainy. 1999. V. 5. P. 338−346.
- Andrievsky G.V., Burenin I.S. On medicinal and preventive efficacy of small doses of hydrated C60 fullerenes at cancer pathologies // Chemistry Preprint Archive. 2002. V. 2002. N 6. P. 53−68.
- Beck M., Mandi Cr., Keki S. Sulubility and molecular state of Сб0 in organic solvents H Fullerenes. Recent advances in the chemistry and physics of fullerenes and related materials. 1995. V. 2. P. 1510−1518.
- Ruoff R. S., Tse D. S., Malhotra R., Lorents D. C. Solubility offullerene (C60) in a variety of solvents I I J. Phys. Chem. 1993. V. 97. P. 3379−3383.
- Sivaraman N., Dhamodaran R., Kaliappan I., Srinivasan T.G., Vasudeva Rao P R., Mathews С. K. Solubility ofC60 in Organic Solvents И ACS J.Org.Chem. 1992. V. 57. P. 6077−6079.
- Beck M, Mandi G. Sulubility ofC60//Fullerene Sei. Technol. 1997. V. 5. N 2. P. 291−310.
- Sivaraman N., Tour J.M. in 185th Meet, of the Electrochemical Society of America, May 1994, San Francisco, Rep. 1211
- Scrivens W. A. Tour J.M. Potent solvents for C60 and their utility for the rapid acquisition of 13C NMR data for fullerenes I I J. Chem. Soc. Chem. Commun. 1993. V. 15. P. 1207−1209.
- Talukdar S., Pardhan P., Banerji A. Electron donor-acceptor interaction of C6o with n- and n-donors: A rational approach towards its solubility // Fullerene Sei. Technol. 1997. V. 5. P. 547−557.
- Kulkarni P.P., Jafvert C.T. Solubility of С to in solvent mixtures If Environ. Sei. Technol. 2008. V. 42. P. 845−851.
- Semenov K.N., Arapov O.V., Charykov N.A. The solubility of fullerenes in n-alkanols-1 //Russ. J. Phys. Chem. 2008. V. 82. P. 1318−1326.
- Безмельницын B.H., Елецкий A.B., Окунь M.B. Фуллерены в растворах II Усп. физ. наук. 1998. Т. 168. № 11. С. 1195−1220.
- Мчедлов-Петросян Н. О. Растворы фуллерена С6<�у коллоидный аспект // Химия, физика и технология поверхности! 2010. Т. 1. № 1. С. 19−37.
- Ying Q., Marecek J., Chu В. Solution behavior of buckminsterfullerene (C60) in benzene II J. Chem. Phys. 1994. V. 101. N 4. P. 2665−2672.
- Bulavin L.A., Adamenko I.I., Yashchuk V.M., et al. Self-organization C60 nanoparticles in toluene solutions // J. Mol. Liq. 2001. V. 93. P. 187−191.
- Rudalevige Т., Francis A.H., Zand R. Spectroscopic studies of fullerene aggregates //J. Phys. Chem. A. 1998. V. 102. N 48. P. 9797−9802.
- Biju V., Barazzouk S., Thomas K.G., et al. Photoinduced electron transfer between 1,2,5-triphenylpyrrolidinofullerene cluster aggregates and electron donars // Langmuir. 2001. V. 17. P. 2930−2936.
- Biju V., Sudeep P. K., Thomas K. G., et al. Clusters of bis- and tris-fullerenes // Langmuir. 2002. V. 18. P. 1831−1839.
- Deguchi S., Mukai S. Top-down preparation of dispersions of C60 nanoparticles in organic solvents // Chem. Lett. 2006. V. 35. N 4. P. 396−397.
- Levi N., Hantgan R.R., Lively M.O., et al. C60-Fullerenes- detection of intracellular phololuminescence and lack of cytotoxic effects // J. Nanotechnol. 2006. V. 4. N 14. P. 4−14.
- Deguchi S., Mukai S.-A., Yamazaki T. et al. Nanoparticles of fullerene C60 from engineering of antiquity // J. Phys. Chem. C. 2010. V. 114. N 2. P. 849−856.
- Da Ros T., Prato M. Medicinal chemistry with fullerenes and fullerene derivatives H Chem. Commun. 1999. P. 663−669.
- Clements A.F., Haley J.E., Urbas A.M. et al. Photophysicalproperties of C60 colloids suspended in water with Triton X-100 surfactant: Excited-state properties with femtosecond resolution II J. Phys. hem. A. 2009. V. 113. N 23. P. 6437−6445.
- Scrivens W.A., Tour J.M., Creek K.E., et al. Synthesis of 14C-Iabeled C60, its suspension in water, and its uptake by human keratinocytes // J. Am. Chem. Soc. 1994. V. 116. N 10. P. 4517−4518.
- Duncan L.K., Jinschek I.R., Vikesland P.J. C60 Colloid formation in aqueous systems: Effects of preparation method on size, structure, and surface charge // Environ. Sei. Technol. 2008. V. 42. N 1. P. 173−178.
- Fortner I.D., Lyon D.Y., Sayes C.M. et al. C60 in water: Nanocrystalformation and microbial response I I Environ. Sei. Technol. 2005. V. 39. N 11. P. 4307−4316.
- Brant J.A., Labille J., Bottero J.-Y., et al. Characterizing the impact of preparation method on fullerene cluster structure and chemistry // Langmuir. 2006. V. 22. N 8. P. 3878−3885.
- Lyon D.Y., Adams L.K., Falkner J.C., et al. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size // Environ. Sei. Technol. 2006. V. 40. N 14. P. 4360−4366.
- Brant J., Lecoanet H., Hotze M., et al. Comparison of electrokineticproperties of colloidal fullerenes (n-C60) formed using two procedures // Environ. Sci. Technol.2005. V. 39. N 17. P. 6343−6351.
- Espinase B., Hotze E.M., Wiesner M.R. Transport and retention of colloidal aggregates of C60 in porous media: Effect of organic macromolecules, ionic composition, and preparation method // Environ. Sci. Technol. 2007. V. 41. N 21. P. 7396−7402.
- Xie B., Xu Z., Guo W., Li Q. Impact of natural organic matter on the physicochemical properties of aqueous Cw nanoparticles // Environ. Sci. Technol. 2008. V. 42. N. 8. P. 2853−2859.
- Kato H., Nakamura A., Takahashi K., et al. Size effect on UV-Vis absorption properties of colloidal C6 particles in water // Phys. Chem. Chem. Phys. 2009. V. 11. p. 4946−4948.
- Andrievsky G.V., Kosevich M.V., Vovk O.M. et al. On the production of an agueous colloidal solution of fullerene // J. Chem. Soc. Chem. Commun. 1995. P. 1281−1282.
- Labille J., Brant J., Villieras F., et al. Affinity of C60 fullerene with water // Fullerenes, Nanotubes and Carbon nanostructures. 2006. V. 14. P. 307−314
- Oberdorster E., Zhu S., Blickley T.M., et al. Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (Ceo) on aquatic organisms // Carbon.2006. V. 44. P. 1112−1120.
- Chen K.L., Elimelech M. Relating colloidal stability of fullerene (C^o) nanoparticles to nanoparticle charge and electrokinetic properties II Environ. Sci. Technol. 2009.V. 43. N 19. P. 7270−7276.
- Ma X., Bouchard D. Formation of aqueous suspensions offullerenes // Environ. Sci. Technol. 2009. V. 43. N 2. P. 330−336.
- Bouchard D., Ma X., Isaacson C. Colloidal properties of aqueous fullerenes: Isoelectric points and aggregation kinetics of C60 and C70 derivatives // Environ. Sci. Technol. 2009. V. 43. N 17. P. 6597−6603,
- Hou W.-C., Jafvert C.T. Photochemical transformation of aqueous C60 clusters in sunlight II Environ. Sci. Technol. 2009. V. 43. N 2. P. 362−367.
- Doi Y., Ikeda A., Akiyama M., et al. Intracellular uptake andphotodynatnic activity of water-soluble 60.- and [70]fullerenes incorporated in liposomes II Chemistry. 2008. V. 12. N 10. P. 3035−3044.
- Crespilho F.N., Ghica M.E., Gouveia-Caridade C. et al. Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimised architectures for biosensing // Talanta. 2008. V. 76. N 4. P. 922−928.
- Зильбер JI.A. Фризе B.B. Об антигенных свойствах коллоидных металлов И Журнал зксперим. биол. 1928. № 11. С, 128−136.
- Huang G.S., Chen Y.-S., Yeh H.W. Measuring the Flexibility of Immunoglobulin by Gold Nanoparticles H Nano Letters. 2006. V. 6. N 11. P. 24 672 471.
- Shiotsuka H., Imamura T., Kumgai I. Gold-binding protein and use thereof. USA Patent N 178 522. 2007. 68 p.
- Lee S C., Parthasarathy R., Duffin. T.D., et al. Recognition properties of antibodies to РАМАМ dendrimers and their use in immune detection of dendrimers H Biomed Microdev. 2001. V. 3. P. 53−59.
- Tomalia D.A. Dendrimer Research//Science 1991. V. 252. P. 1231.
- Zimmerman S.C., Zharov I., Wendland M.S., et al. Molecular imprinting inside dendrimers!/J. Am. Chem. Soc. 2003. V. 125. P. 13 504−13 518.
- Zimmermenn S.C., Wendland M.S., Rakow N.A., et al. Synthetic hosts by monomolecular imprinting inside dendrimers // Nature. 2002. V. 418. P. 399−403.
- Chen B.-X., Wilson S.R., Das M, et al. Antigenicity of fullerenes: Antibodies specific for fullerenes and their characteristics // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 10 809−10 813.
- Braden B.C. Goldbaum F.A., Chen B.-X., et al. X-ray crystal structure of an anti-Buckminsterfullerene antibody Fab fragment: Biomolecular recognition of Ceo I I Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 12 193−12 197.
- Bensasson R. V., Bienveue F., Janot J.-M., et. al Photophysical properties of three hydrofullerenes II Chem. Phys. Lett. 1995. V. 248. P. 566−570.
- Wang Y., Cao J., Shuster D. I., et al. A superior synthesis of 6,6.-methanofullerenes: the reaction of sulfonium ylides with C60H Tetrahedron Lett. 1995. V. 36. P. 6843−6846.
- Erlanger, B.F., Chen B.-X., Zhu M., et al. Binding of an Anti-Fullerene IgG Monoclonal Antibody to Single Wall Carbon Nanotubes H Nano Lett. 2001. V. 1. P. 465−467.
- Kirschner A.N., Erlanger B.F., Wilson S.R. A biosensor for fullerenes and carbon nanotubes И Eighth Foresight Conferenceon Molecular Nanotechnology. November 3−5, 2000. Maryland. USA.
- Андреев C.M., Петрухина A.O., Бабахин A.A., и соав. О генерации антител к фуллерену С60 П Иммунология. 2006. Т. 6. С. 343−348.
- Андреев СМ., Петрухина А. О., Бабахин А. А., и соавт. Иммуногенные и аллергенные свойства конъюгатов фуллерена с аминокислотами и белком // Доклады РАН. 2000. Т. 370. № 2. С. 261−264.
- Hennion М.-С., Scribe P. In Environmental Analysis. Techniques applications and quality assurance. Barcelo D., Ed. (Elsevier, Amsterdam, 1993).
- Moussa F., Pressac M., Genin E., et al. Quantitative analysis of C6ofullerene in blood and tissue by high-performance liquid chromatography with photodiode-array and mass spectrometric detection И J. Chromatogr. B. 1997. V. 696. P. 153−159.
- Santa Т., Yoshioka D., Homma H., et al. High performance liquid chromatography of fullerene (C60) in plasma using ultraviolet and mass spectrometric detection // Biol. Pharm. Bull. 1995. V. 18. P. 1171−1174.
- Isaacson C.W., Usenko C.Y., Tanguay R.L., et al. Quantification offidlerenes by LC/ESI-MS and its application to in Vivo toxicity assays // Anal. Chem. 2007. V. 79. P. 9091−9097.
- Xia X.R., Monteiro-Riviere N.A., Riviere J.E. Trace analysis of fullerenes in biological samples by simplified liquid—liquid extraction and high-performance liquid chromatography III Chromatogr. A. 2006. V. 1129. P. 216−222.
- Kibanov A. Improving enzymes by using them in organic solvents. Review // Nature. 2001. V. 409. P. 241−246.
- Wasacz F.M., Olinger J.M., Jakobsen R.J. Fourier transform infrared studies of proteins using nonaqueous solvents. Effects of methanol and ethylene glycol on albumin and immunoglobulin G H Biochemistry. 1987. V. 26. P. 1464−1470.
- Мельникова Я. И., Одинцов С. Г., Кравчук З. И., и соавт. Антигенсвязывающая активность моноклональных антител после инкубации с органическими растворителями // Биохимия. 2000. Т. 65. № 11. С. 1488−1499.
- Dzantiev В. В., Zherdev А. V., Romanenko О. G., et al. Development and comparative study of different immunoenzyme techniques for pesticide detection // Int. J. Environ. Anal.Chem. 1996. V. 65. P. 95−111.
- Habeeb A.F. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid И Anal. Biochem. 1966. V. 14. N 3. P. 328−336.
- Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity // Nature. 1975. V. 256. P. 495−497.
- O’Brien R. D., Nitric acid digestion of tissues for liquid scintillation counting // Anal. Biochem. 1964. V. 7. P. 251−254.
- Biacore X Handbook. 2001: Biacore AB.
- The Immunoassay Handbook. Edited by Wild D. Elsevier: London, 2005.
- Sittampalam G.S., et al., Application of experimental design techniques to optimize a competitive ELISA //J Immunol. Methods 1996. V. 190. N 2. P. 151−161.
- Nath S., Pal H., Palit D.K., et al. Aggregation offullerene, C60, in benzonitrile H J. Phys. Chem. B. 1998. V. 102. P. 10 158−10 164.
- Obeng Y.S., Bard A.J. Langmuir films of Ceo at the air-water interface if J. Chem. Soc. 1991. V. 113. P. 6279−6280.
- Nakamura Т., Tachibana H., Yumura M., et al. Formation of Langmuir-Blodgett films offullerene I I Langmuir. 1992. V. 8. P. 4−6.
- Anish G., Jack B.H., John В., Vander S. Size analysis of single fullerene molecules by electron microscopy //Carbon. 2004. V. 42. P. 1907−1915.
- Ying Q.C. Marecek J. Chu B. Slow aggregation of buckminsterfullerene C60 in benzene solution // Chem. Phys. Lett. 1994. V. 219. N 3−4. P. 214−218.
- Sun Y.P., Bunker C.E. Fullerene c70 in solvent mixture // Nature. 1993. V. 365. P. 398.
- Hirendra N. G., Avinash V. S., Jai P. M. Aggregation of C70 in Solvent Mixtures // J. Phys. Chem. 19,96. V. 100. P. 9439−9443.
- Benyamini H., Shulman-Peleg A., Wolfson H.J., et al. Interaction of C6/r fullerene and carboxyfullerene with proteins: docking and binding site alignment II Bioconjug. Chem. 2006. V. 17. N 2. P. 378−386.
- Friedman S.H., DeCamp D.L., Sijbesma R., et al. Inhibition of the HIV-1 protease by fullerene derivatives: model binding studies and experimental verifications //J. Am. Chem. Soc. 1993. V. 115. N 15. P. 6506−6509.
- Deguchi S., Yamazaki T., Mukai S.A., et al. Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies I I Chem. Res. Toxicol. 2007. V. 20. N 6. P. 854−858.