Π‘Π°ΠΊΠ°Π»Π°Π²Ρ€
Π”ΠΈΠΏΠ»ΠΎΠΌΠ½Ρ‹Π΅ ΠΈ курсовыС Π½Π° Π·Π°ΠΊΠ°Π·

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ сСмСйства Π³Π΅Π½ΠΎΠ² su (mg) Ρƒ Drosophila melanogaster

Π”ΠΈΡΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡΠŸΠΎΠΌΠΎΡ‰ΡŒ Π² Π½Π°ΠΏΠΈΡΠ°Π½ΠΈΠΈΠ£Π·Π½Π°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒΠΌΠΎΠ΅ΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹

Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ прямоС взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠΎΠΌ Π‘Π 60 ΠΈ Π±Π΅Π»ΠΊΠΎΠΌ Π‘Π 190, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ инсуляторного комплСкса, Π° Ρ‚Π°ΠΊΠΆΠ΅ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠΎΠΌ Π‘Π 60 ΠΈ Π±Π΅Π»ΠΊΠΎΠΌ EAST, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΡ‹ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ ядСрного матрикса. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π±Π΅Π»ΠΊΠ° Π‘Π 60 ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ инсулятора Su (Hw) ΠΈ ΠΊΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚ация Π±Π΅Π»ΠΊΠ° Π‘Π 60 с ΠΎΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ инсулятора Su (Hw) -Π±Π΅Π»ΠΊΠΎΠΌ Mod (mdg4)67.2… Π§ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘ >

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

  • ЦСль ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования
  • Бписок сокращСний
  • 1. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹
    • 1. 1. Бпособы рСгуляции транскрипции
    • 1. 2. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ — рСгуляторныС элСмСнты Π²Ρ‹ΡΡˆΠΈΡ… эукариот
    • 1. 3. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ²
      • 1. 3. 1. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡ‡Π½Ρ‹Ρ…
        • 1. 3. 1. 1. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€ Π -Π³Π»ΠΎΠ±ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ кластСра
        • 1. 3. 1. 2. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€ igf2/hl9 локуса
      • 1. 3. 2. Π‘Π°Ρ€ΡŒΠ΅Ρ€Π½Ρ‹Π΅ элСмСнты Π΄Ρ€ΠΎΠΆΠΆΠ΅ΠΉ
      • 1. 3. 3. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Ρ‹
        • 1. 3. 3. 1. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹ локуса Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ шока
        • 1. 3. 3. 2. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹Π΅ элСмСнты Bithorax комплСкса
        • 1. 3. 3. 3. Su (Hw) инсулятор
  • 2. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 2. 1. Π₯арактСристика ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдования
    • 2. 2. ГСнСтичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
      • 2. 2. 1. Π›ΠΈΠ½ΠΈΠΈ Drosophila melanogaster, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅
      • 2. 2. 2. ЀСнотипичСский Π°Π½Π°Π»ΠΈΠ· экспрСссии Π³Π΅Π½ΠΎΠ²
      • 2. 2. 3. Врансформация эмбрионов Drosophila melanogaster ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ трансгСнных Π»ΠΈΠ½ΠΈΠΉ
      • 2. 2. 4. Π˜Π½Π΄ΡƒΠΊΡ†ΠΈΡ сайт-спСцифичСской Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ
      • 2. 2. 5. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ ΡΡ€Π±Πž
      • 2. 2. 6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… Π»ΠΈΠ½ΠΈΠΉ Drosophila melanogaster
      • 2. 2. 7. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² Π³Π΅Π½Π°Ρ… east, ΡΡ€Π±Πž, ср190 ΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΠΈ Π³Π΅Π½Π° east Π² ΠΌΡƒΡ…, нСсущих Π°Π»Π»Π΅Π»ΠΈ Π³Π΅Π½ΠΎΠ² yellow, scute, cut
      • 2. 2. 8. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΉ Π² Π³Π΅Π½Π°Ρ… east, ΡΡ€Π±Πž, mod (mdg4) ΠΈ Π³ΠΈΠΏΠ΅Ρ€ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΠΈ Π³Π΅Π½Π° east Π² Π³Π΅Π½Π΅Ρ‚ичСскиС конструкции PfflKII-Su-w+} ΠΈ P{E-Su-w+}
      • 2. 2. 9. Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ гипСрэкспрСссии Π³Π΅Π½Π° east Π² Π»ΠΈΠ½ΠΈΠΈ, нСсущиС Π³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡŽ P{PRE (S)YW}, ΠΈ Π³Π΅Π½Π΅Ρ‚ичСскиС конструкции, Π²Ρ‚Ρ€ΠΎΠ΅Π½Π½Ρ‹Π΅ Π² Ρ‚Π΅Π»ΠΎΠΌΠ΅Ρ€Π½Ρ‹Π΅ Ρ€Π°ΠΉΠΎΠ½Ρ‹ хромосом
  • 2.
  • Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅ гипСрэкспрСссии Π³Π΅Π½Π° east Π² ΠΌΡƒΡ…, нСсущих Π°Π»Π»Π΅Π»ΠΈ Π³Π΅Π½Π° su (var)205. 54 2.3 БиохимичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹
    • 2. 3. 1. ΠŸΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°Π·Π½Π°Ρ цСпная рСакция
    • 2. 3. 2. ΠŸΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ΅Ρ‚Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈ Ρ‚рансформация. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π½ΠΎΠΉ Π”ΠΠš. РСстрикция, Π»ΠΈΠ³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, пСрСосаТдСниС Π”ΠΠš, гСль-элСктрофорСз
    • 2. 3. 3. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚Π΅ΠΉ ΠΊΠ”ΠΠš Π³Π΅Π½ΠΎΠ²
    • 2. 3. 4. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкций, ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡ€ΡŽΡ‰ΠΈΡ… Π±Π΅Π»ΠΊΠΈ Π‘Π 60 ΠΈ Mod (mdg4)
    • 2. 3. 5. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ конструкций для Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²ΠΎΠΉ Π΄Π²ΡƒΠ³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ систСмы
    • 2. 3. 6. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ гСнСтичСских конструкций
    • 2. 3. 7. Π’Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠΌΠ½ΠΎΠΉ Π”ΠΠš Drosophila melanogaster
    • 2. 3. 8. Π‘Π°ΡƒΠ·Π΅Ρ€Π½-Π±Π»ΠΎΡ‚-Π°Π½Π°Π»ΠΈΠ·
    • 2. 2. 9. ДроТТСвая двугибридная систСма
    • 2. 3. 10. Π—Π°Π΄Π΅Ρ€ΠΆΠΊΠ° Π² Π³Π΅Π»Π΅ комплСкса Π”ΠΠš-Π±Π΅Π»ΠΎΠΊ
    • 2. 3. 11. ΠžΠΊΡ€Π°ΡΠΊΠ° ядСр ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π»ΠΈΠ½ΠΈΠΈ S
    • 2. 3. 12. ΠžΠΊΡ€Π°ΡΠΊΠ° ядСр ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΈΠΌΠ°Π³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… дисков Π»ΠΈΡ‡ΠΈΠ½ΠΊΠΈ Drosophila melanogaster
    • 2. 3. 13. ДСтСкция Π±Π΅Π»ΠΊΠΎΠ² Π½Π° ΠΏΠΎΠ»ΠΈΡ‚Π΅Π½Π½Ρ‹Ρ… хромосомах Π΄Ρ€ΠΎΠ·ΠΎΡ„ΠΈΠ»Ρ‹
    • 2. 3. 14. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΠ½Π°
    • 2. 3. 15. ΠšΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚Π°Ρ†ΠΈΡ
  • 3. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Ρ‹
    • 3. 1. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Π³Π΅Π½Π° east Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ инсулятора Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ аллСля Ρƒ
    • 3. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, отвСтствСнной Π·Π° ΠΏΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ EAST-зависимой рСпрСссии
      • 3. 2. 1. ВлияниС гипСрэкспрСссии Π³Π΅Π½Π° east Π½Π° Π°Π»Π»Π΅Π»ΠΈ yTD Π³Π΅Π½Π° yellow
      • 3. 2. 2. ВлияниС гипСрэкспрСссии Π³Π΅Π½Π° east Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ аллСляу
    • 3. 4. УчастиС Π±Π΅Π»ΠΊΠΎΠ² Π‘Π 60 ΠΈ EAST Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ инсулятора Su (Hw)
      • 3. 4. 1. ВзаимодСйствиС Π±Π΅Π»ΠΊΠ° Π‘Π 60 с ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ Su (Hw) in vitro
      • 3. 4. 2. ВзаимодСйствиС Π±Π΅Π»ΠΊΠ° Π‘Π 60 ΠΈ ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π° Su (Hw) in vivo Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Π»ΠΈΠ½ΠΈΠΈ S
      • 3. 4. 3. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств Π±Π΅Π»ΠΊΠ° Π‘Π 60 in vivo Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ°Ρ… Drosophila melanogaster
      • 3. 4. 4. Π€ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ Π‘Π 60 ΠΈ EAST ΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ инсуляторного комплСкса
    • 3. 5. ВлияниС Π±Π΅Π»ΠΊΠ° EAST Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ инсулятора Su (Hw) Π² ΡΠΈΡΡ‚Π΅ΠΌΠ°Ρ… ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚ Π°Π»Π»Π΅Π»Ρ Ρƒ
      • 3. 5. 1. ВлияниС Π±Π΅ΠΊΠ° EAST Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π½ΠΎΠ³ΠΎ комплСкса achaete-scute
      • 3. 5. 2. ВлияниС Π±Π΅Π»ΠΊΠ° EAST Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π΅Π½Π° cut
      • 3. 5. 3. ВлияниС Π³Π΅Π½Π° east Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рСпрСссионных Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… комплСксов
  • 4. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²
    • 4. 1. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния Π³Π΅Π½Π° east Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ инсулятора Π² ΡΠΈΡΡ‚Π΅ΠΌΠ΅ аллСля Ρƒ
    • 4. 2. ИсслСдованиС молСкулярных взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ EAST, Π‘Π 60 ΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ инсуляторного комплСкса
    • 4. 3. ВлияниС Π±Π΅Π»ΠΊΠ° EAST Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… рСпрСссионных комплСксов
  • 5. Π’Ρ‹Π²ΠΎΠ΄Ρ‹

Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠ³ΠΎ сСмСйства Π³Π΅Π½ΠΎΠ² su (mg) Ρƒ Drosophila melanogaster (Ρ€Π΅Ρ„Π΅Ρ€Π°Ρ‚, курсовая, Π΄ΠΈΠΏΠ»ΠΎΠΌ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ)

ЭкспрСссия Π³Π΅Π½Π° рСгулируСтся ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… циси транс-рСгуляторных элСмСнтов. К Ρ†ΠΈΡ-рСгуляторным элСмСнтам относятся ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π”ΠΠš, нСпосрСдствСнно ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΊ Π³Π΅Π½Π°ΠΌ, Ρ‚Π°ΠΊ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Ρ‹, ΠΈ Π΄ΠΈΡΡ‚Π°Π»ΡŒΠ½ΠΎ располоТСнныС энхансСры ΠΈ ΡΠ°ΠΉΠ»Π΅Π½ΡΠ΅Ρ€Ρ‹. Π‘ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ энхансСров Π½Π΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π°ΠΌ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π΄ΠΎΠ»ΠΆΠ½Π° ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ систСма, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ энхансСра Ρ‚ΠΎΠ»ΡŒΠΊΠΎ «ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ» ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠΉ систСмы Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΠ³Ρ€Π°Ρ‚ΡŒ инсуляторы. Π˜Π½ΡΡƒΠ»ΡΡ‚ΠΎΡ€ прСдставляСт собой ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π”ΠΠš, которая, Π½Π°Ρ…ΠΎΠ΄ΡΡΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ энхансСром ΠΈ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€ΠΎΠΌ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΈΡ… Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΈΠ΅. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, инсуляторы Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡŽΡ‚ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ рСгуляции транскрипции, опрСдСляя ΠΊΠ°ΠΊΠΎΠΉ энхансСр Π΄ΠΎΠ»ΠΆΠ΅Π½ Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€.

На Π½Π°ΡΡ‚оящий ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ дСйствия инсуляторов ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π½Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½. БущСствуСт нСсколько ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈΡ… Ρ„ункционирования, каТдая ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠΌΠ΅Π΅Ρ‚ свои прСимущСства ΠΈ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΊΠΈ, Π½ΠΎ ΠΏΡ€Π°ΠΊΡ‚ичСски всС ΠΎΠ½ΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ связь Ρ€Π°Π±ΠΎΡ‚Ρ‹ инсулятора с ΡΠ΄Π΅Ρ€Π½ΠΎΠΉ ΠΏΠ΅Ρ€ΠΈΡ„Π΅Ρ€ΠΈΠ΅ΠΉ ΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ ядСрного матрикса. К ΡΠΎΠΆΠ°Π»Π΅Π½ΠΈΡŽ, Π΄ΠΎ ΡΠΈΡ… ΠΏΠΎΡ€ Π½Π΅ Π²Ρ‹ΡΠ²Π»Π΅Π½Ρ‹ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ, входящиС Π² ΡΡ‚ΠΈ ядСрныС структуры ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° Ρ€Π°Π±ΠΎΡ‚Ρƒ инсулятора. Π­Ρ‚ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ исслСдований прСдставляСт большой интСрСс, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ рассматриваСт ΠΈΠ½ΡΡƒΠ»ΡΡ†ΠΈΡŽ ΠΊΠ°ΠΊ ΡΠΎΡΡ‚Π°Π²Π½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ глобального процСсса рСгуляции транскрипциии Π² ΡΠ΄Ρ€Π΅ Π² Ρ†Π΅Π»ΠΎΠΌ. ВыяснСниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… связСй ΠΌΠ΅ΠΆΠ΄Ρƒ процСссом инсуляции ΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ ядСрного матрикса ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ½ΡΡ‚ΡŒ Ρ€ΠΎΠ»ΡŒ инсуляторов Π² ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… областСй ядра: с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ ΠΈ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ транскрипции.

Π’ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΡˆΠΈΡ€ΠΎΠΊΠΎ извСстного Su (Hw)зависимого инсулятора, Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ рСтротранспозона.

ΠœΠ”Π“4 Ρƒ Drosophila melanogaster. Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ инсулятор Su (Hw) способСн Π±Π»ΠΎΠΊΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ 30 извСстных энхансСров, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… Π² Ρ€Π°Π·Π½Ρ‹Ρ… тканях ΠΈ Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… этапах развития. Π‘Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΉ комплСкс инсулятора Su (Hw) состоит ΠΈΠ· Ρ‚Ρ€Π΅Ρ… извСстных Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π±Π΅Π»ΠΊΠΎΠ²: ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ с Π”ΠΠš Π±Π΅Π»ΠΊΠ° Su (Hw), Π±Π΅Π»ΠΊΠ° Mod (mdg4) ΠΈ Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° CP 190. ΠœΡƒΡ‚Π°Ρ†ΠΈΡ Π² Π³Π΅Π½Π΅ mod (mdg4) Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ связываниС ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΠΌ Π±Π΅Π»ΠΊΠ° Mod (mdg4)67.2 с ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹ΠΌ комплСксом. ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Mod (mdg4)67.2 ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ инсуляции Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСмах. НСдавно Π² Π½Π°ΡˆΠ΅ΠΉ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ Π±Ρ‹Π»Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° Π³Ρ€ΡƒΠΏΠΏΠ° Π³Π΅Π½ΠΎΠ² su (mg) {suppressor of mod (mdg4)), ΠΌΡƒΡ‚Π°Ρ†ΠΈΠΈ Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΊ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡŽ 8ΠΈ (Нш)-зависимой инсуляции Π΄Π°ΠΆΠ΅ ΠΏΡ€ΠΈ отсутствии Π±Π΅Π»ΠΊΠ° Mod (mdg4)67.2. Один ΠΈΠ· ΠΊΠ»ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π³Π΅Π½ΠΎΠ² Π³Ρ€ΡƒΠΏΠΏΡ‹ su (mg) ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅Ρ‚ Π±Π΅Π»ΠΎΠΊ EAST, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ, ΠΊΠ°ΠΊ прСдполагаСтся, являСтся ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ ядСрного матрикса. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ свойств ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ этого Π±Π΅Π»ΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π±ΠΎΠ»Π΅Π΅ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ½ΡΡ‚ΡŒ связь ΠΌΠ΅ΠΆΠ΄Ρƒ инсуляциСй, ядСрным матриксом ΠΈ Ρ‚ранскрипциСй.

ЦСль ΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ исслСдования

.

Основной Ρ†Π΅Π»ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являСтся ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ структуры ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π³Π΅Π½Π° ΠΈΠ· ΡΠ΅ΠΌΠ΅ΠΉΡΡ‚Π²Π° su (mg), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅Ρ‚ Π±Π΅Π»ΠΎΠΊ EAST.

Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ Π±Ρ‹Π»ΠΈ поставлСны ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ:

1. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ гСнСтичСскиС взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ Π³Π΅Π½ΠΎΠΌ east ΠΈ Π³Π΅Π½Π°ΠΌΠΈ, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π±Π΅Π»ΠΊΠΈ, входящиС Π² ΡΠΎΡΡ‚Π°Π² инсуляторного комплСкса Su (Hw).

2. Найти Π² ΡΠΎΡΡ‚Π°Π²Π΅ рСтортранспозона ΠœΠ”Π“4 ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΡƒΡŽ Π·Π° ΠΏΡ€ΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ эффСктов Π³Π΅Π½Π° east.

3. Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ сущСствованиС молСкулярных взаимодСйствий ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ EAST, Π‘Π 60 ΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ инсуляторного комплСкса.

Бписок сокращСний.

1. ПЦР — полимСразная цСпная рСакция.

2. Ρ‚.ΠΏ.Π½. — Ρ‚ысяч ΠΏΠ°Ρ€ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ½ΠΎΠ².

3. ΠΏ.Π½. — ΠΏΠ°Ρ€ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ².

4. Π”ΠšΠŸ — Π΄Π»ΠΈΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠΉ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ рСтротранспозона ΠœΠ”Π“4.

5. AS-комплСкс — Π³Π΅Π½Π½Ρ‹ΠΉ комплСкс achaete-scute.

6. DPE — располоТСнный послС ВАВА-бокса ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π½Ρ‹ΠΉ элСмСнт (downstream core promoter element).

7. MTE — ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, содСрТащая 10 ΠΏΠ°Ρ€ Π½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰Π°ΡΡΡ послС ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π² ΠΏΡ€ΠΎΠΌΠΎΡ‚ΠΎΡ€Π΅.

1. ΠžΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹.

5. Π’Ρ‹Π²ΠΎΠ΄Ρ‹.

1. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… гСнСтичСских ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… систСм, ΠΊΠ°ΠΊ Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ ΠΈΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½ΠΎ созданных, Π²ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π±Ρ‹Π»Π° ΠΏΠΎΠΊΠ°Π·Π°Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ инсуляторными ΠΈ Ρ€Π΅ΠΏΡ€Π΅ΡΡΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ свойствами инсулятора Su (Hw) ΠΈ ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ экспрСссии Π³Π΅Π½ΠΎΠ² east ΠΈ ΡΡ€Π±Πž. Π‘Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ уровня экспрСссии Π³Π΅Π½ΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… входящиС Π² ΠΈΠ½ΡΡƒΠ»ΡΡ‚ΠΎΡ€Π½Ρ‹ΠΉ комплСкс Π±Π΅Π»ΠΊΠΈ, Π² ΡΠΎΡ‡Π΅Ρ‚Π°Π½ΠΈΠΈ с ΠΌΡƒΡ‚ациями Π² Π³Π΅Π½Π°Ρ… east ΠΈ ΡΡ€Π±Πž, Ρ‚Π°ΠΊΠΆΠ΅ мСняло свойства инсулятора.

2. УстановлСно, Ρ‡Ρ‚ΠΎ для проявлСния эффСктов, связанных с ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΠ΅ΠΉ Π³Π΅Π½Π° east, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ инсулятора Su (Hw) ΠΈ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π²ΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π° ΠΈΠ· Ρ€Π΅Ρ‚ротранспозона ΠœΠ”Π“4.

3. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ прямоС взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠΎΠΌ Π‘Π 60 ΠΈ Π±Π΅Π»ΠΊΠΎΠΌ Π‘Π 190, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ инсуляторного комплСкса, Π° Ρ‚Π°ΠΊΠΆΠ΅ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π±Π΅Π»ΠΊΠΎΠΌ Π‘Π 60 ΠΈ Π±Π΅Π»ΠΊΠΎΠΌ EAST, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΡ‹ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ ядСрного матрикса. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π±Π΅Π»ΠΊΠ° Π‘Π 60 ΡΠ²ΡΠ·Ρ‹Π²Π°Ρ‚ΡŒΡΡ с ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ инсулятора Su (Hw) ΠΈ ΠΊΠΎΠΈΠΌΠΌΡƒΠ½ΠΎΠΏΡ€Π΅Ρ†ΠΈΠΏΠΈΡ‚ация Π±Π΅Π»ΠΊΠ° Π‘Π 60 с ΠΎΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ инсулятора Su (Hw) -Π±Π΅Π»ΠΊΠΎΠΌ Mod (mdg4)67.2 ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π±Π΅Π»ΠΎΠΊ Π‘Π 60 Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠΌ инсуляторного комплСкса.

Благодарности.

Автор Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π›Π‘. МСльниковой ΠΈ П. Π“. Π“Π΅ΠΎΡ€Π³ΠΈΠ΅Π²Ρƒ Π·Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, ΠΊΠΎΠ½ΡΡƒΠ»ΡŒΡ‚Π°Ρ†ΠΈΠΈ ΠΈ ΠΎΠ±ΡΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ М. Π’. ΠšΠΎΡΡ‚ΡŽΡ‡Π΅Π½ΠΊΠΎ ΠΈ И. А. Π’ΠΎΠ»ΠΊΠΎΠ²Ρƒ Π·Π° Ρ‚Π΅Ρ…Π½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΠΎΠΌΠΎΡ‰ΡŒ.

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ вСсь тСкст

Бписок Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹

  1. Ahmad К, Melnick A, Lax S, Bouchard D, Liu J, Kiang C, Mayer S, Takahashi S, Licht J, Prive G. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. // Mol. Cell. 2003. V.12. P.1551−1564.
  2. Andrulis E, Neiman A, Zappulla D, Sternglanz R. Perinuclear localization of chromatin facilitates transcriptional silencing. //Nature. 1998. V.394. P.592−595.
  3. Avramova Z, Tikhonov A. Are scs and scs' 'neutral' chromatin domain boundaries of the locus?//TrendsGenet. 1999. V.15. P.138−139.
  4. Babiarz J, Halley J, Rine J. Telomeric heterochromatin boundaries require NuA4-dependent acetylation of histone variant H2A. Z in Saccharomyces cerevisiae. // Genes Dev. 2006. V.20. P.700−710.
  5. Baniahmad A, Steiner C, Kohne AC, Renkawitz R. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. // Cell. 1990. V.61. P.505−514.
  6. Bell A, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. // Nature. 2000. V.405. P.482−485.
  7. Bell A, West A, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. // Cell. 1999. V.98. P.387−396.
  8. Bell A, West A, Felsenfeld G. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. // Science. 2001. V.291. P.447−450.
  9. Bezborodova E, Kulikov A, Georgiev P. A new family of genes which, when mutated, suppress the inhibitory effect of the mod (mdg4)lul mutation on y2 expression in Drosophila melanogaster. //Mol Gen Genet. 1997. V.257. P.83−90.
  10. Bi X, Broach J. UASrpg can function as a heterochromatin boundary element in yeast. // Genes Dev. 1999. V.13. P.1089−1101.
  11. Bi X., Broach J. Chromosomal boundaries in S. cerevisiae. // Curr.Opin.Gen.Dev. 2001. V. 11. P. 199−204.
  12. Blackwood E, Kadonaga J. Going the distance: a current view of enhancer action. // Science. 1998. V.281 P.60−63.
  13. Blanton J, Gaszner M, Schedl P. Protein: protein interactions and the pairing of boundary elements in vivo. // Gen.Dev. 2003. V.17. P.664−675.
  14. Blobel G. Gene gating: a hypothesis.'// PNAS. 1985. V.82. P.8527−8529.
  15. Bondarenko V, Liu Y, Jiang Y, Studitsky V. Communication over a large distance: enhancers and insulators. // Biochem Cell Biol. 2003 V.81. P.241−251.
  16. Brasset E, Bantignies F, Court F, Cheresiz S, Conte C, Vaury C. Idefix insulator activity can be modulated by nearby regulatory elements. // Nucleic Acids Research. 2007. V.35. P.2661−2470.
  17. Breathnach R, Chambon P. Organization and expression of eucaryotic split genes coding for proteins. // Annu Rev Biochem. 1981. V.50. P.349−383.
  18. Brown C, Silver P. Transcriptional regulation at the nuclear pore complex. // Current Opinion in Genetics & Development. 2006. V.17. P. 1−7.
  19. Buchner K, Roth P, Schotta G, Krauss V, Saumweber H, Reuter G, Dorn R. Genetic and molecular complexity of the position effect variegation modifier mod (mdg4) in Drosophila. // Genetics. 2000. V.155. P.141−157.
  20. Bulger M, Groudine M. Looping versus linking: toward a model for long-distance gene activation. // Genes Dev. 1999. V.13. P.2465−2477.
  21. Burgess-Beusse Π’, Farrell Π‘, Gaszner M, Litt M, Mutskov V, Recillas-Targa F, Simpson M, West A, Felsenfeld G. The insulation of genes from external enhancers and silencing chromatin. //Proc.Natl.Acad.Sci.USA. 2002. V.99. P. 16 433−16 437.
  22. Burke T, Kadonaga J. Drosophila TFIID binds to a conserved downstream basal promoter element that is present in many TATA-box-deficient promoters. // Genes Dev. 1996. V.10. P.711−724.
  23. Burley S, Roeder G. Biochemistry and structural biology of transcription factor IID (TFIID). // Annu Rev Biochem. 1996. V.65. P.769−799.
  24. Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, Sakonju S. The MCP silencer of the Drosophila Abd-B gene requires both Pleoihomeotic and GAGA factor for the maintenance of repression. //Development. 2001. V.128. P.2163−2173.
  25. Butcher R, Chodagam S, Basto R, Wakefield J, Henderson D, Raff J, Whitfield W. The Drosophila centrosome-associated protein CP 190 is essential for viability but not for cell division. //J Cell Sci. 2004 V.117.P.1191−1199.
  26. Cai H, Levine M. Modulation of enhancer-promoter interactions by insulators in the Drosophila embryo. //Nature. 1995 V.376. P.533−536.
  27. Cai H, Levine M. The gypsy insulator can function as a promoter-specific silencer in the Drosophila embrio. //EMBO J. 1997. V.16. P. 1732−1741.
  28. Cai H, Shen P. Effects of cis arrangement of chromatin insulators on enhancer-blocking activity. // Science. V.291. P.493−495.
  29. Cam H, Sugiyama T, Chen S, Chen X, Fitzgerald C, Grewal S. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. // Nat.Genet. 2005. V.37. P.809−819.
  30. Capelson M, Corces V. Boundary elements and nuclear organization. // Biol.Cell. 2004. V.96. P.617−629.
  31. Capelson M, Corces V. SUMO conjugation attenuates the activity of the gypsy chromatin insulator. //EMBO J. 2006. V.25. P. 1906−1914.
  32. Capelson M, Corces V. The Ubiquitin Ligase dTopors Directs the Nuclear Organization of a Chromatin Insulator. // Mol Cell. 2005 V.20. P. 105−116.
  33. Casolari J, Brown C, Drubin D, Rando O, Silver P. Develomentally induced changes in transcriptionally programm alter spatial organization across chromosomes. // Gen.Dev.2005. V.19. P. l 188−1198.
  34. Casolari J, Brown C, Komili S, West J, Hieronimus H, Silver P. Genome-wide localization of the nuclear transport machinary couples transcriptional status and nuclear organization. //Cell. 2004. V.117. P.427−439.
  35. Chan C, Rastelli L, Pirrotta V. A. Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. //EMBO J. 1994. V13. P.2553−2564.
  36. Chung J, Whitely M, Felsenfeld G. A 5' element of the chicken b-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. //Cell. 1993. V.74. P.505−514.
  37. Cleard F, Moshkin Y, Karch F, Maeda R. Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. // Nat Genet.2006. V.38. P.931−935.
  38. Comet I, Savitskaya E, Schuettengruber B, Negre N, Lavrov S, Parshikov A, Jude F, Gracheva E, Georgiev P, Cavalli G. PRE-mediated bypass of two Su (Hw) insulators targets PcG proteins of a downstream promoter. //Dev. Cell. 2006. V. 11. P. l 17−124.
  39. Courey A, Jia S. Transcriptional repression: the long and the short of it. // Genes Dev. 2001. V.15. P.2786−2796.
  40. Cryderman D, Morris E, Biessmann H, Elgin S, Wallrath L. Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. // EMBO J. 1999. V.18. P.3724−3735.
  41. Cutler G, Perry K, Tjian R. Adf-1 is a nonmodular transcription factor that contains a TAF-binding Myb-like motif. // Mol. Cell Biol. 1998 V. 18. P.2252−2261.
  42. Cuvier 0, Hart C, Laemmli U. Identification of a class of chromatin boundary elements. // Mol. Cell Biol. 1998. V.18. P.7478−7486.
  43. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. // Science. 2002. V.295. P.1306−1311.
  44. Denning D, Mykytka B, Allen N, Huang L, Al B, Rexach M. The nucleoporin Nup60p functions as a Gsplp-GTP-sensitive tether for Nup2p at the nuclear pore complex. // J. Cell Biol. 2001. V.154. P.937−950.
  45. Dilworth D, Suprapto A, Padovan J, Chait B, Wozniak R, Rout M, Aitchison J. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. // J. Cell Biol. 2001. V.153. P. 1465−1478.
  46. Donze D, Kamakaka R. RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. // EMBO J. 2001. V.20. P.520−531.
  47. Donze D., Adams C, Rine J, Kamakaka R. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. // Genes Dev. 1999. V.13. P.698−708.
  48. Dorn R, Morawietz H, Reuter G, Saumweber H. Identification of an essential Drosophila gene that is homologous to the translation initiation factor eIF-4A of yeast and mouse. // Mol. Gen. Genet. 1993. V.237. P.233−240.
  49. Dorsett D. Distant liaisons: long-range enhancer-promoter interactions in Drosophila. // Curr.Opin.Genet.Dev. 1999. V.9. P.505−514.
  50. Drissen R, Palstra R, Gillemans N, Splinter E, Grosveld F, Philipsen S, de Laat W. The active spatial organization of the J3-globin locus requires the transcription factor EKLF. // Genes Dev. 2004. 18. P.2485−2490.
  51. Duncan I. The bithorax complex. // Annu.Rev.Genet. 1987. V.21. P.285−319.
  52. Dvir A, Conaway J, Conaway R. Mechanism of transcription initiation and promoter escape by RNA polymerase II.//Curr.Opin.Genet.Dev. 2001. V.ll. P.209−214.
  53. Eggert H, Gortchakov A, Saumweber H. Identification of the Drosophilainterband-specific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure. //J. of Cell Science. 2004. V.117. P.4253−4264.
  54. Eissenberg J, Morris G, Reuter G, Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. //Genetics. 1992. V.131. P.345−352.
  55. Emerson B. Specificity of gene regulation. // Cell. 2002. V.109. P.267−270.
  56. Engel N, Bartolomei S. Mechanisms of insulator function in gene regulation and genomic imprinting. //Int.Rev.Cytol. 2003. V.232. P.89−127.
  57. Engel N, Thorvaldsen J, Bartolomei M. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. // Hum.Mol.Genet. 2006. V.15. P.2945−2954.
  58. Engel N, West A, Felsenfeld G, Bartolomei S. Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19DMDis uncovered by CpG mutations. //Nat.Genet. 2004. V.36. P.883−888.
  59. Erlich H. PCR technology. // Stockton Press. New York. 1989.
  60. Espinas M, Jimenez-Garcia E, Vaquero A, Canudas S, Bernues J, Azorin F. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. //J.Biol.Chem. 1999. V.274. P. 16 461−16 469.
  61. Farkas G, Leibovitch B, Elgin S. Chromatin organization and transcriptional control of gene expression in Drosophila. // Gene. 2000. V.253. P. l 17−136.
  62. Farrell C, West A, Felsenfeld G. Conserved CTCF insulator elements flank the mouse and human P-globin loci. //Mol.Cell.Biol. 2002. V.22. P.3820−3831.
  63. Fedoriw A, Stein P, Svoboda P, Schultz R, Bartolomei M. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. // Science. 2004. V.303. P.238−240.
  64. Filippova G, Thienes C, Penn B, Cho D, Hu Y, Moore J, Klesert T, Lobanenkov V, Tapscott S. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. // Nat.Genet. 2001. V.28 P.335−343.
  65. Fourel G, Boscheron C, Revardel E, Lebrun E, Hu Y, Simmen K, Muller K, Li R, Mermod N, Gilson E. An activationindependent role of transcription factors in insulator function. //EMBO Rep. 2001. V.2. P. 124−132.
  66. Fourel G, Revardel E, Koering C, Gilson E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. //EMBO J. 1999. V.18. P.2522−2537.
  67. Galy V, Olivo-Marin J, Scherthan H, Doye V, Rascalou N, Nehrbass U. Nuclear pore complexes in the organization of silent telomeric chromatin. // Nature. 2000. V.403. P.108−112.
  68. Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. //Nature Reviews Genetics. 2006. V.7. P.703−713.
  69. Gaszner M, Vazquez J, Schedl P. The Zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer-promoter interaction. // Genes.Dev. 1999. V.13. P.2098−2107.
  70. Gause M, Hovhannisyan H, Kan T, Kuhfittig S, Mogila V, Georgiev P. hobo Induced rearrangements in the yellow locus influence the insulation effect of the gypsy su (Hw)-binding region in Drosophila melanogaster. // Genetics. 1998 V.149. P. 1393−1405.
  71. Gause M, Morcillo P, Dorsett D. Inhibition of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between Suppressor of Hairy-wing and Modifier of mdg4 proteins. //Mol.Cell Biol. 2001. V.21. P.4807−4817.
  72. Gdula D, Corces V. Characterization of functional domains of the su (Hw) protein that mediate the silencing effect of mod (mdg4) mutations. // Genetics. 1997. V.145. P. 153 161.
  73. Georgiev P, Corces V. The Su (Hw) protein bound to gypsy sequences in one chromosome can repress enhancer-promoter interactions in the paired gene located in the other homolog. //Proc.Natl.Acad.Sci.USA. 1995. V.92. P.5184−5188.
  74. Georgiev P, Korochkina S, Georgieva S, Gerasimova T. Mitomycin Π‘ induces genomic rearrangements involving transposable elements in Drosophila melanogaster. // Mol.Gen.Genet. 1990. V.220. P.229−233.
  75. Georgiev P, Kozycina M. Interaction between mutations in the suppressor of Hairy wing and modifier of mdg4 genes of Drosophila melanogaster affecting the phenotype of gypsy-induced mutations. // Genetics. 1996. V.142. P.425−436.
  76. Gerasimova T, Byrd K, Corces V. A chromatin insulator determines the nuclear localization of DNA. // Mol Cell. 2000. V.6. P. 1025−1035.
  77. Gerasimova T, Corces V. Polycomb and Trithorax group proteins mediate the function of a chromatin insulator. // Cell. 1998. V.92. P.511−521.
  78. Geyer P, Clark I. Protecting against promiscuity: the regulatory role of insulators. // Cell. Mol. Life Sci. 2002. V.59. P.2112−2127.
  79. Geyer P, Corces V. DNA position-specific repression of transcription by a Drosophila zinc finger protein. // Genes Dev. 1992. V.6. P. 1865−1873.
  80. Geyer P, Corces V. Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. // Genes Dev. 1987. V. 1. P.996−1004.
  81. Geyer P. The role of insulator elements in defining domains of gene expression. // Curr.Opin.Genet.Dev. 1997. V.7. P.242−248.
  82. Ghosh D, Gerasimova T, Corces V. Interactions between the Su (Hw) and Mod (mdg4) proteins required for gypsy insulator function. // EMBO J. 2001. V.20. P.2518−2527.
  83. Glass Π‘, Rosenfeld M. The coregulator exchange in transcriptional functions of nuclear receptors. // Genes Dev. 2000. V.14 P. 121−141.
  84. Glover D, Leibowitz M, McLean D, Parry H. Mutations in aurora preventcentrosome separation leading to the formation of monopolar spindles. // Cell. 1995. V.81. P.95−105.
  85. Golovnin A, Birukova I, Romanova 0, Silicheva M, Parshikov A, Savitskaya E, Pirrotta V, Georgiev P. An endogenous Su (Hw) insulator separates the yellow gene from the Achaetescute gene complex in Drosophila. // Development. 2003. V.130. P.3249−3258.
  86. Golovnin A, Mazur A, Kopantseva M, Kurshakova M, Gulak P, Gilmore B, Whitfield W, Geyer P, Pirrotta V, Georgiev P. Integrity of the Mod (mdg4)-67.2 BTB domain is critical to insulator function in Drosophila. //.Mol.Cell Biol. 2007. V.27. P.963−974.
  87. Gortchakov A, Eggert H, Gan M, Mattow J, Zhimulev I, Saumweber H. Chriz, a chromodomain protein specific for the interbands of Drosophila melanogaster polytene chromosomes. // Chromosoma. 2005. V. l 14. P.54−66.
  88. Gotta M, Laroche T, Formenton A, Maillet L, Scherthan H, Gasser S. The clustering of telomeres and colocalization with Rapl, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. // J. Cell Biol. 1996. V. l34 P. 1349−1363.
  89. Grewal S, Elgin S. Heterochromatin: new possibilities for the inheritance of structure. // Curr.Opin.Genet.Dev. 2002. V.12. P.-178−187.
  90. Guasconi V, Souidi M, Ait-Si-Ali S. Nuclear Positioning, Gene Activity and Cancer. // Cancer Biology & Therapy. 2005. V. 4. P.134−138
  91. Haldar D, Kamakaka R. tRNA genes as chromatin barriers. // Nat.Struct.Mol.Biol. 2006. V.13. P.192−193.
  92. Hampsey M. Molecular genetics of the RNA polymerase II general transcription machinery. // Microbiology and Molecular Biology Reviews. 1998. V.62. P.465−503.
  93. Hark A, Schoenherr C, Katz D, Ingram R, Levorse J, Tilghman S. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. // Nature. 2000. V.405. P.486−489.
  94. Harrison D, Gdula D, Coyne R, Corces V. A leucine zipper domain of the suppressor of Hairy-wing protein mediates its repressive effect on enhancer function. // Gen.Dev. 1993. V.7. P. 1966−1978.
  95. Hart C, Cuvier O, Laemmli U. Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF. // Chromosoma. 1999. V.108. P.375−383.
  96. Hart C, Zhao K, Laemmli U. The scs' boundary element: characterization of boundary element-associated factors. //Mol.Cell Biol. 1997. V.17 P.999−1009.
  97. Holmgren C, Kanduri C, Dell G, Ward A, Mukhopadhya R, Kanduri M, Lobanenkov V, Ohlsson R. CpGmethylation regulates the Igf2/H19 insulator. // Curr.Biol. 2001. V. 11. P. 1128−1130.
  98. Holohan E, Kwong C, Adryan B, Bartkuhn M, Herald M, Renkawitz R, Russell S, White R. CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. // PLoS Genetics. 2007. V.3. P. el 12.
  99. Ishii K, Arib G, Lin C, Van Houwe G, Laemmli U. Chromatin boundaries in budding yeast: the nuclear pore connection. // Cell. 2002. V.109. P.551−562.
  100. Jack J, Dorsett D, Delotto Y, Liu S. Expression of the cut locus in the Drosophila wing margin is required for cell type specification and is regulated by a distant enhancer. //Development. 1991. V.113. N3 P.735−747.
  101. Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H, Schedl P. ΠœΠ΅Ρ€ and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. //Nucleic Acids Res. 1994. V.22. P.3138−3146.
  102. Karess R, Rubin G. Analysis of P transposable element functions in Drosophila. // Cell. 1984. V.38 P.135−146.
  103. Kato Y, Sasaki H. Imprinting and looping: epigenetic marks control interactions between regulatory elements. // BioEssays. 2005. V.27. P. 1−4.
  104. Katsani K, Hajibagheri M, Verrijzer C. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. // EMBO J. 1999. V. 18. P.698−708.
  105. Kellogg D, Oegema K, RafF J, Schneider K, Alberts Π’. CP60: a microtubule-associated protein that is localized to the centrosome in a cell cycle-specific manner. //Mol.Biol.Cell. 1995. V.6. P. 1673−1684.
  106. Kellum R, Schedl P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. //Mol. Cell-Biol. 1992. V.12. P.2424−2431.
  107. Kim J, Shen B, Rosen C, Dorsett D. The DNA-binding and enhancer-blocking domains of the Drosophila suppressor of hairy-wing protein. // MCB. 1996. V.16. P.3381−3392.
  108. Kimura A, Horikoshi M. Partition of distinct chromosomal regions: negotiable border and fixed border. // Genes Cells 2004. V.9. P.499−508.
  109. Kimura A, Umehara T, Horikoshi M. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. // Nat.Genet. 2002. V.32. P.370−377.
  110. Kobor M, Venkatasubrahmanyam S, Meneghini M, Gin J, Jennings J, Link A, Madhani H, Rine J. A protein complex containing the conserved Swi2/Snf2-related ATPase Swrlp deposits histone variant H2A. Z into euchromatin. // PLoS Biol. 2004. V.2. P. E131.
  111. Kurshakova M, Maksimenko O, Golovnin A Pulina M, Georgieva S, Georgiev P, Krasnov A. Evolutionarily conserved E (y)2/Susl protein is essential for the barrier activity of Su (Hw)-dependent insulators in Drosophila. // Mol Cell. 2007. V.27. P.332−338.
  112. Kyrchanova O, Toshchakov S, Parshikov A, Georgiev P. Drosophila bithorax complex: effects of insulator pairing on the enhancer-promoter communication. // Mol Cell Biol. 2007 V.27. P.3035−3043.
  113. Labrador M, Corces, V. Setting the boundaries of chromatin domains and nuclear organization. // Cell. 2002. V. l 11. P. 151−154.
  114. Lee J. Molecular links between X-inactivation and autosomal imprinting: X-inactivation as a driving force for the evolution of imprinting? // Curr Biol. 2003. V.13. P. R242-R254.
  115. Lee T, Young R. Transcription of eukaryotic protein-coding genes. // Annu Rev Genet. 2000. V.34. P.77−137.
  116. Lefstin J, Yamamoto K. Allosteric effects of DNA on transcriptional regulators. // Nature. 1998. V.392 P.885−888.
  117. Lei E, Corces V. RNA interference machinery influences the nuclear organization of a chromatin insulator. // Nat Genet. 2006. V.38. P.936−941.
  118. Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. // Genes Dev. 2000. V.14. P.2551−2569.
  119. Lewis A, Mitsuya K, Constancia M, Reik W. Tandem repeat hypothesis in imprinting: deletion of a conserved direct repeat element upstream of hl9 has no effect on imprinting in the igf2-hl9 region. // Mol.Cell.Biol. 2004. V.24. P.5650−5656.
  120. Lieb J, Liu X, Botstein D, Brown P. Promoter-specific binding of Rapl revealed by genome-wide maps of protein-DNA association. //Nat.Genet. 2001. V.28. P.327−334.
  121. Lim C, Santoso B, Boulay T, Dong E, Ohler U, Kadonaga J. The MTE, a new core promoter element for transcription by RNA polymerase II. // Genes Dev. 2004. V. 18. P. 1606−1617.
  122. Lindsley D, Zimm G. The genome of Drosophila melanogaster. // Academic Press. New York. 1992.
  123. Ling J, Li T, Hu J, Vu T, Chen H, Qiu X, Cherry A, Hoffman A. CTCF Mediates Interchromosomal Colocalization Between Igf2/H19 and Wsbl/Nfl. // Science. 2006. V.312. P.269−272.
  124. Lucchesi J, Kelly W, Panning B. Chromatin remodeling in dosage compensation. // Annu Rev Genet. 2005. V.39. P.615−651.
  125. Lutz M, Burke L, LeFevre P, Myers F, Thome A, Crane-Robinson C, Bonifer C, Filippova G, Lobanenkov V, Renkawitz R. Thyroid hormone-regulated enhancer blocking: cooperation of CTCF and thyroid hormone receptor. // EMBO J. 2003. V.22. P. 1579−1587.
  126. Maillet L, Gaden F, Brevet V, Fourel G, Martin S, Dubrana K, Gasser S, Gilson E. Ku-deficient yeast strains exhibit alternative states of silencing competence. // EMBO Rep. 2001. V.2. P.203−210.
  127. Marlor R, Parkhurst S, Corces V. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. // Mol Cell Biol. 1986. V.6. P. 1129−1134.
  128. Mazo A., Mizrokhi L., Karavanov A. Sedkov Y, Krichevskaja A, Ilyin Y. Suppression in Drosophila: su (Hw) and su (f) gene products interact with a region of mdg4 (gypsy) regulating its transcriptional activity. //EMBO J. 1989. V.8. P.903−911.
  129. McKenna N, O’Malley B. Combinatorial control of gene expression by nuclear receptors and coregulators. // Cell. 2002. V.108. P.465−474.
  130. Melnick A, Carlile G, Ahmad K, Kiang C, Corcoran C, Bardwell V, Prive G, Licht J. Critical residues within the BTB domain of PLZF and Bcl-6 modulate interaction with corepressors. //MCB. 2002. V.22. P. 1804−1818.
  131. Melnikova L, Georgiev P. Drosophila telomeres: the non-telomerase alternative. H Chromosome Res. 2005. V.13. P.431−441.
  132. Melnikova L, Georgiev P. Enhancer of terminal gene conversion, a new mutation in Drosophila melanogaster that induces telomere elongation by gene conversion. II Genetics. 2002. V.162. P. 1301−1312.
  133. Meneghini M, Wu M, Madhani H. Conserved histone variant H2A. Z protects euchromatin from the ectopic spread of silent heterochromatin. // Cell. 2003. V. l 12. P.725−736.
  134. Mihaly J, Hogga I, Barges S, Galloni M, Mishra R, Hagstrom K, Muller M, Schedl P, Sipos L, Gausz J, Gyurkovics H, Karch F. Chromatin domain boundaries in the bithorax complex. // Cell Mol. Life Sci. 1998. V.54. P.60−70.
  135. Mikhailovsky S, Belenkaya T, Georgiev P. Broken chromosomal ends can be elongated by conversion in Drosophila melanogaster. // Chromosoma. 1999. V. l08. P. 114−120.
  136. Minervini C, Marsano R, Casieri P, Fanti L, Caizzi R, Pimpinelli S, Rocchi M, Viggiano L. Heterochromatin protein 1 interacts with 5'UTR of transposable element ZAM in a sequence-specific fashion. // Gene. 2007. V.393. P. l-10.
  137. Modolell J, Campuzano S. The achaete-scute complex as an integrating device. // Int J Dev Biol. 1998. V.42. N3. P.275−282.
  138. Mogila V, Ladvishenko A, Simonova O, Gerasimova T. Intragenic suppression: Stalker, a retrovirus-like transposable element, can compensate for a deficiency at the cut locus of Drosophila melanogaster. // Genetica. 1992. V.86. P.305−311.
  139. Muller M, Hagstrom K, Gyurkovics H, Pirrotta V, Schedl P. The ΠœΠ΅Ρ€ element from the Drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. //Genetics. 1999. V.153. P.1333−1356.
  140. Muravyova E, Golovnin A, Gracheva E, Parshikov A, Belenkaya T, Pirrotta V, Georgiev P. Loss of insulator activity by paired Su (Hw) chromatin insulators. // Science. 2001. V.291. P.495−498.
  141. Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and HI9 into parent-specific chromatin loops. // 2004. Nat.Genet. V.36. P.889−893.
  142. Mutskov V, Farrell C, Wade P, Wolffe A, Felsenfeld G. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. // Genes Dev. 2002. V.16. P.1540−1554.
  143. Myer VE, Young RA. RNA polymerase II holoenzymes and subcomplexes. // J Biol Chem. 1998. V. 273. P.27 757−27 760.
  144. Nabirochkin S, Ossokina M, Heidmann T. A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence. // J.Biol.Chem. 1998. V.273. P.2473−2479.
  145. Narlikar G, Fan H, Kingston R. Cooperation between complexes that regulate chromatin structure and transcription. // Cell. 2002. V.108. P.475−487.
  146. Noma K, Allis C, Grewal S. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. // Science. 2001. V.293. P. l 150−1155.
  147. Noma К, Cam H, Maraia R, Grewal S. A Role for TFIIIC transcription factor complex in genome organization. // Cell. 2006. V.125. P.859−872.
  148. Oegema K, Marshall W, Sedat J, Alberts B. Two proteins that cycle asynchronously between centrosomes and nuclear structures: Drosophila CP60 and CP 190. //Journal of Cell Science. 1997. V.110. P.1573−1583.
  149. Oki M, Kamakaka R. Barrier function at HMR. // Mol.Cell. 2005. V.19. P.707−716.
  150. Oki M, Valenzuela L, Chiba T, Ito T, Kamakaka T. Barrier proteins remodel and modify chromatin to restrict silenced domains. // Mol.Cell.Biol. 2004. V.24. P.1956−1967.
  151. Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. // Genes Dev. 1996. V. 10 P.2657−2683.
  152. Orphanides G, Reinberg D. A unified theory of gene expression // Cell. 2002. V.108 P.439−451.
  153. Pagans S, Ortiz-Lombardia M, Espinas M, Bernues J, Azorin F. The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation. //NAR. 2002. V.30. P.4406−4413.
  154. Pai C, Lei E, Ghosh D, Corces V. The centrosomal protein CP 190 is a component of the gypsy chromatin insulator. //Mol.Cell. 2004. V.16. P.737−748.
  155. Parnell T, Kuhn E, Gilmore B, Helou C, Wold M, Geyer P. Identification of Genomic Sites That Bind the Drosophila Suppressor of Hairy-wing Insulator Protein. // Mol.Cell.Biol. 2006. V.26. N.16. P.5983−5993.
  156. Paule M, White R. Survey and summary: transcription by RNA polymerases I and III. //NAR. 2000. V.28. P. 1283−1298.
  157. Pryde F, Louis E. Limitations of silencing at native yeast telomeres. // EMBO J.1999. V.18. P.2538−2550.
  158. Ptashne M. Gene regulation by proteins acting nearby and at a distance. // Nature. 1986. V.322. P.697−701.
  159. Qi H, Rath U, Ding Y, Ji Y, Blacketer J, Girton J, Johansen J, Johansen K. EAST interacts with Megator and localizes to the putative spindle matrix during mitosis in Drosophila. // J Cell Biochem. 2005. V.95. P. 1284−1291.
  160. Raisner R, Madhani H. Patterning chromatin: form and function for H2A. Z variant nucleosomes. // Curr.Opin.Genet.Dev. 2006. V.16. P. l 19−124.
  161. Ramos E, Ghosh D, Baxter E, Corces V. Genomic organization of gypsy-like chromatin insulators in Drosophila melanogaster. // Genetics. 2006. V.172. P.2337−2349.
  162. Reed M, Riggs A Mann J. Deletion of a direct repeat element has no effect on Igf2 and HI9 imprinting. //Mamm.G.enome. 2001. V.12. P.873−876.
  163. Ripoche M, Chantal K, Poirier F, Dandolo L. Deletion of the HI 9 transcription unit reveals the existence of a putative imprinting control element. // Genes Dev. 1997. V. 11. P. 1596−1604.
  164. Roeder R. Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. // Cold Spring Harbor Symp Quant Biol. 1998. V.58. P.201−218.
  165. Roseman R., Pirrotta V., Geyer P. The Su (Hw) protein insulates expression of the Drosophila melanogaster white gene from chromosomal position-effects. // EMBO J. 1993. V.12. P.435−442.
  166. Rubin G, Sprandling A. Genetic transformation of Drosophila with transposable element vectors. // Science. 1982. V.218. P.348−353.
  167. Rusche L, Kirchmaier A, Rine J. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. // Annu. Rev.Biochem. 2003. V.12. P.481−516.
  168. Sambrook J, Fritsch E, Maniatis T. Molecular Cloning. A laboratory manual. // CSHL Press. 2001.
  169. Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli U. Nup-PI: The nucleopore-promoter interaction genes in yeast. // Mol.Cell. 2006. V.21. P.379−391.
  170. Schoenherr C, Levorse J, Tilghman S. CTCF maintains differential methylation at the Igf2/H19 locus. //Nat.Genet. 2003. V.33. P.66−69.
  171. Schweinsberg S, Hagstrom K, Gohl D, Schedl P, Kumar R, Mishra R, Karch F. The enhancerblocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites. // Genetics. 2004. V.168. P.1371−1384.
  172. Schweinsberg S, Schedl P. Developmental modulation of Fab-7 boundary function. //Development. 2004. V.131. P.4743−4749.
  173. Scott K, Merrett S, Willard H. A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. // Curr.Biol. 2006. V.16. P. 119−129.
  174. Scott К., Geyer P. Effects of the Su (Hw) insulator protein on the expression of the divergently transcribed Drosophila yolk protein genes. // EMBO J. 1995. V.14. P.6258−6279.
  175. Scott K., Taubman A., Geyer P. Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength. // Genetics. 1999. V. 153. P. 787−798.
  176. Shen B, Kim J, Dorsett D. The enhancer-blocking suppressor of hairy-wing zinc finger protein of Drosophila melanogaster alters DNA structure. // MCB. 1994. V.14. P.5645−5652.
  177. Sipos L, Gyurkovics H. Long-distance interactions between enhancers and promoters. // FEBS J. 2005. V.272. P.3253−3259.
  178. Smale S. Core promoters: active contributors to combinatorial gene regulation. // Genes Dev. 2001. V. 15. P. 2503−2508.
  179. Smale S. Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. // Biochim Biophys Acta. 1997. V.1351 P.73−88.
  180. Smith P., Corces V. The suppressor of Hairy-wing binding region is required for gypsy mutagenesis. //Mol.Gen.Genet. 1992. V.233. P.65−70.
  181. Spana C, Corces V. DNA bending is a determinant of binding specificity for a Drosophila zink finger protein. // Genes Dev. 1990. V.4. P.1505−1515.
  182. Spana C, Harrison D, Corces V. The Drosophila melanogaster supressor of Hairy wing protein binds to specific sequences of the gypsy retrotransposon. // Genes Dev. 1988. V.2. P. 1414−1423.
  183. Sparago A, Cerrato F, Vernucci M, Ferrero G, Silengo M, Riccio A. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. //Nat.Genet. 2004. V.36. P.958−960.
  184. Splinter E, Heath H, Kooren J, Palstra R, Klous P, Grosveld F, Galjart N, de Laat W. CTCF mediates long-range chromatin looping and local histone modification in the P-globin locus. // Gen.Dev. 2006. V.20. P.2349−2354.
  185. Stadnick M, Pieracci F, Cranston M, Taksel E, Thorvaldsen J, Bartolomei M. Role of a 461 bp G-rich repetitive element in H19 transgene imprinting. // Dev. Genes Evo. 1999. V.209. P.239−248.
  186. Strahl B, Allis C. The language of covalent histone modifications. // Nature. 2000. V.403. P.41−45.
  187. Strambio-de-Castillia C, Blobel G, Rout M. Proteins connecting the nuclear pore complex with the nuclear interior. // J. Cell Biol. 1999. V.144. P.839−855.
  188. Struhl K. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. //Cell. 1987. V.49. P.295−297.
  189. Struhl, K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. // Cell. 1999. V.98. P. 1−4.
  190. Suka N, Luo K, Grunstein M. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 Iysinel6 and spreading of heterochromatin. // Nat.Genet. 2002. V.32. P.378−383.
  191. Sun F, Cuaycong M, Craig C, Wallrath L, Locke J, Elgin S. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. // Proc. Natl. Acad. Sci. 2000. V.97. P.5340−5345.
  192. Sun F, Elgin S. Putting boundaries on silence. // Cell. 1999. V.99. P.459−462.
  193. Szabo P, Tang S, Rentsendorj A, Pfeifer G, Mann J. Maternal-specific footprints at putative CTCF sites in the HI 9 imprinting control region give evidence for insulator function. // Curr.Biol. 2000. V.10. P.607−610.
  194. Szabo P, Tang S, Silva F, Tsark W, Mann J. Role of CTCF binding sites in the Igf2/H19 imprinting control region. // Mol.Cell.Biol. 2004. V.24. P.4791−4800.
  195. Tackett A, Dilworth D, Davey M, O’Donnell M, Aitchison J, Rout M, Chait B. Proteomic and genomic characterization of chromatin complexes at a boundary. // J. Cell Biol. 2005. V. 169. P.35−47.
  196. Tanimoto K, Sugiura A, Omori A, Felsenfeld G, Engel J, Fukamizu A Human b-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells. //Mol Cell Biol. 2003. V.23. P.8946−8952.
  197. Thorvaldsen J, Duran K, Bartolomei M. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of HI 9 and Igf2. // Genes Dev. 1998. V.12. P.3693−3702.
  198. Thorvaldsen J, Mann M, Nwoko 0, Duran K, Bartolomei M. Analysis of sequence upstream of the endogenous HI9 gene reveals elements both essential and dispensable for imprinting. //Mol. Cell. Biol. 2002. V.22. P.2450−2462.
  199. Tolhuis B, Palstra R, Splinter’E, Grosveld F, de Laat W. Looping and interaction between hypersensitive sites in the active P-globin locus. // Mol.Cell. 2002. V.10. P. 1453−1465.
  200. Tremblay K, Duran K, Bartolomei M. A 5' 2-kilobase-pair region of the imprinted mouse HI9 gene exhibits exclusive paternal methylation throughout development. // Mol.Cell.Biol. 1997. V.17. P.4322−4329.
  201. Udvardy A. Dividing the empire: boundary chromatin elements delimit the territory of enhancers. // EMBO J. 1999. V. 18. P. 1−8.
  202. Vakoc Π‘, Letting D, Gheldof N, Sawado T, Bender M, Groudine M, Weiss M, Dekker J, Blobel G. Proximity among distant regulatory elements at the p-globin locus requires GATA-1 and FOG-1. //Mol.Cell. 2005. V.17. P.453−462.
  203. Vazquez J, Muller M, Pirrotta V, Sedat J. The ΠœΠ΅Ρ€ element mediates stable long-range chromosome-chromosome interactions in Drosophila. // Mol.Biol.Cell. 2006. V.17. P.2158−2165.
  204. Verona R, Mann M, Bartolomei M. Genomic imprinting: intricacies of epigenetic regulation in clusters. // Annu.Rev.Cell Dev.Biol. 2003. V.19. P.237−259.
  205. Vostrov A, Quitschke W. The zinc finger protein CTCF binds to the APBb domain of the amyloid b-protein precursor promoter. Evidence for a role in transcriptional activation. //J Biol Chem. 1997. V.272. P.33 353−33 359.
  206. Wasser M, Chia W. The Drosophila EAST protein associates with a nuclear remnant during mitosis and constrains chromosome mobility. // J Cell Sci. 2003. V. l 16. P.1733−1743.
  207. Wasser M, Chia W. The EAST protein of Drosophila controls an expandable nuclear endoskeleton. //Nat Cell Biol. 2000. V.2. P.268−275.
  208. Wasser M, Chia W. The extrachromosomal EAST protein of Drosophila protein can associate with polytene chromosomes and regulate gene expression. // PLoS ONE. 2007. V.2. P. e412.
  209. Wasser M, Osman Z, Chia W. EAST and Chromator control the destruction and remodeling of muscles during Drosophila metamorphosis. // Dev Biol. 2007. V.307. P.380−393.
  210. Weinmann R, Roeder R. Role of DNA-dependent RNA polymerase 3 in the transcription ofthetRNAand 5S RNA genes. //PNAS. 1974. V.71. P. 1790−1794.
  211. Weis L, Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J. 1992 V.6. P.3300−3309.
  212. Wells W. Searching for a spindle matrix. I I J Cell Biol. 2001. V.154. P. 11 021 104.
  213. West A, Huang S, Gaszner M, Litt M, Felsenfeld G. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. // Mol.Cell. 2004. V.16. P.453−463.
  214. West A, Gaszner M, Felsenfeld G. Insulators: many functions, many mechanisms. // Genes Dev. 2002. V.16. P.271−288.
  215. Wood V, Gwilliam R, Rajandream M, Lyne M, Lyne R, et al. The genome sequence of Schizosaccharomyces pombe. //Nature. 2002. V.415. P.871−880.
  216. Xu Q., Li M., Adams J., Cai H. Nuclear location of a chromatin insulator in Drosophila melanogaster. //J Cell Sci. 2004. V. l 17. P. 1025−1032.
  217. Yoon Y, Jeong S, Rong Q, Chung J, Pfeifer K. Analysis of the H19ICR Insulator. //Mol.Cell Biol. 2007 V.27. P.3499−3510.
  218. Yu Q, Qiu R, Foland T, Griesen D, Galloway C, Chiu Y, Sandmeier J, Broach J, Bi X. Raplp and other transcriptional regulators can function in defining distinct domains of gene expression. //Nucleic Acids Res. 2003. V.31. P.1224−1233.
  219. Yusufzai T, Tagami H, Nakatani Y, Felsenfeld G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. // Mol.Cell. 2004. V.13. P.291−298.
  220. Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. // Genes Dev. 2001. V.15. P.2343−2360.
Π—Π°ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Π΅ΠΊΡƒΡ‰Π΅ΠΉ Ρ€Π°Π±ΠΎΡ‚ΠΎΠΉ